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Invariant manifolds

Polynomial differential system

ẋj = Xj(x), x = (x1, . . . , xn), Xj(x) ∈ C[x], 1 ≤ j ≤ n

Polynomial vector field

XnD = X1(x)
∂

∂x1
+ . . .+Xn(x)

∂

∂xn

Invariant manifold M ⊂ Cn

s0 ∈ M ⇒ ∀t ∈ R x(t; s0) ∈ M, where x(0; s0) = s0
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Invariant algebraic manifolds

Invariant algebraic manifold M ⊂ Cn of codimension k,
1 ≤ k ≤ n− 1

M =
k⋂

j=1

{Gj(x) = 0, Gj(x) ∈ C[x]}

Polynomial ordinary differential equation

E : E

(
x,

dx

dt
, . . . ,

dnx

dtn

)
= 0, E(s1, . . . , sn+1) ∈ C[s1, . . . , sn+1]

A compatible with E polynomial ordinary differential equation of
degree n− k defines an invariant algebraic manifold M of
codimension k
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Invariant algebraic manifolds of codimension n− 1

Reduction of order E : E
(
x, dxdt , . . . ,

dnx
dtn

)
= 0

⇓ dx
dt=y(x)

H : H
(
x, y, dydx , . . . ,

dn−1y
dxn−1

)
= 0

Compatible equations: F

(
x,

dx

dt

)
= 0 ⇒ F (x, y) = 0

F (x, y) ∈ C[x, y] is called an algebraic invariant

x(t) such that F

(
x,

dx

dt

)
= 0 is called an algebraically invariant

solution of equation (E)
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Finding algebraic invariants

The Poincaré problem

For a given polynomial vector field X2D find an upper bound on the
degrees of its irreducible algebraic invariants: P(X2D).

Partial solution 1. (D. Cerveau, A. Lins Neto, 1991)

If all the singularities of irreducible invariant algebraic curves are of
nodal type, then the following estimate is valid: P(X2D) ≤ degX2D + 2.

Partial solution 2. (M. M. Carnicer, 1994)

If there are no dicritical singularities of the vector field X2D on
irreducible invariant algebraic curves, then the following estimate is
valid: P(X2D) ≤ degX2D + 2.
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Finding algebraic invariants

The methods of finding algebraic invariants (2D)

The method of undetermined coefficients (the method of Prelle and
Singer)

The Lagutinskii’s method (the method of the extactic polynomial)

Decomposition into weight-homogeneous components:

X (0)
2DF (0) = λ(0)(x, y)F (0), λ(0)(x, y) ∈ C[x, y]

Methods, based on symmetries

The method of fractional power series (Puiseux series)
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Finding algebraic invariants

Fields of Puiseux series

C∞{x} =

{
y(x) =

+∞∑
k=0

bkx
l0
n − k

n , x0 = ∞

}
,

Cx0
{x} =

{
y(x) =

+∞∑
k=0

ck(x− x0)
l0
n + k

n , x0 ∈ C

}

Rings of polynomials over the fields of Puiseux series

C∞{x}[y], Cx0
{x}[y]
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Finding algebraic invariants

Projection operators:

{W (x, y)}+ yields the polynomial part of W (x, y) ∈ C∞{x}[y];
{W (x, y)}− yields the non-polynomial part of W (x, y) ∈ C∞{x}[y].

The Newton–Puiseux theorem

Any solution y(x) of the equation F (x, y) = 0, F (x, y) ∈ C[x, y] \ C[x]
can be locally represented by a convergent Puiseux series.

We are interested in Puiseux series satisfying the equation

H : H

(
x, y,

dy

dx
, . . . ,

dn−1y

dxn−1

)
= 0
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Finding algebraic invariants

Theorem 1 (M. V. Demina, 2018)

Let F (x, y) ∈ C[x, y] \ C[x] be an irreducible algebraic invariant of
equation (E). Then F (x, y) takes the form

F (x, y) =

{
µ(x)

N∏
j=1

{y − yj,∞(x)}

}
+

, µ(x) ∈ C[x],

where y1,∞(x), . . ., yN,∞(x) are pairwise distinct Puiseux series from the
field C∞{x} that satisfy equation (H).
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Finding the polynomial µ(x)

Theorem 2 (M. V. Demina, 2021)

Let F (x, y) ∈ C[x, y] \ C[x] be an irreducible algebraic invariant of
equation (E). If x0 ∈ C is a zero of the polynomial µ(x), then the
following statements are valid:

At least one Puiseux series from the field Cx0
{x} that has a negative

exponent in the leading-order term solves equation (H).
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Finding the polynomial µ(x)

If the number of distinct Puiseux series from the field Cx0
{x} that

solve equation (H) and have negative exponents in leading-order
terms

yj, x0
(x) = c

(j)
0 (x− x0)

−qj + o
(
(x− x0)

−qj
)
, c

(j)
0 ̸= 0,

qj ∈ Q, qj > 0, 1 ≤ j ≤ L ∈ N
(1)

is finite, then the following inequality m0 ≤
L∑

j=1

qj holds, where

m0 ∈ N is the multiplicity of the polynomial µ(x) at its zero x0.
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The uniqueness properties

Theorem 3 (M. V. Demina, 2021)

Suppose for some x0 ∈ C a Puiseux series y(x) from the field Cx0
{x}

satisfies equation (H) and possesses uniquely determined exponents and
coefficients. Then there exists at most one irreducible algebraic invariant
F (x, y) ∈ C[x, y] \ C[x] of of the related equation (E) such that this
series is annihilated by F (x, y), i.e. the series y(x) solves the equation
F (x, y) = 0.
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The uniqueness properties

Theorem 4 (M. V. Demina, 2021)

If for some x0 ∈ C the number of distinct Puiseux series from the field
Cx0

{x} that satisfy equation (H) is finite, then the related equation
(E) possesses a finite number (possibly none) of irreducible algebraic
invariants. Moreover, the number of pairwise distinct irreducible algebraic
invariants does not exceed the number of distinct Puiseux series from the
field Cx0

{x} that satisfy equation (H).

13 / 44



The Poincaré problem

The finiteness property (Af,f)

1 There exists only a finite number of Puiseux series from the field
C∞{x} that satisfy equation (H).

2 There exists only a finite number of complex numbers x0 ∈ C and a
only finite number of Puiseux series belonging to each of the fields
Cx0

{x} that have negative exponents in the leading-order terms and
satisfy equation (H).

Theorem 5 (Partial solution 3, M. V. Demina, 2022)

Let (H) belong to the set Af,f , then the Poincaré problem for the
related equation (E) has a solution: P(E) ≤ deg∗H.
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Finding algebraic invariants

The method of Puiseux series

1 Find all Puiseux series (centered at finite points and infinity) that
satisfy equation (H).

2 Consider all possible factorizations of algebraic invariants in the ring
C∞{x}[y].

3 Construct and solve the algebraic system resulting from the
condition {

µ(x)
N∏
j=1

{y − y∞,j(x)}

}
−

= 0.
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Finding algebraic invariants

Power geometry

1 Newton polygon of equation (H).
2 Dominant balances U [y(x), x] and reduced equations U [y(x), x] = 0

related to the vertices and edges of the Newton polygon.
3 Power asymptotics y(x) = b0x

r0, b0 ∈ C \ {0}, x → ∞ or x → 0
4 Fuchs indices or Kovalevskaya exponents: V (j) = 0

δU

δy
[b0x

r0, x] = lim
s→0

U [b0x
r0 + sxr0−j, x]− U [b0x

r0, x]

s
= V (j)xr̃0
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Finding algebraic invariants

Computational aspects

finite number of admissible Puiseux series:
{yj,∞(x) ∈ C∞{x}, j = 1, . . . , N} ⇒ degy F ≤ N

infinite number of admissible Puiseux series:
M∑

m=1

(βm)
k = Mϱk, k ∈ N

Lemma (M.V. Demina, 2021). If for some M0 ∈ N this system has a
solution (β1, . . . , βM0

) with βm1
̸= βm2

whenever m1 ̸= m2, then all other
solutions of this system exist only when M = lM0, where l ∈ N \ {1},
and in such case involve l multiple roots for each element of the tuple
(β1, . . . , βM0

).
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Exact solutions

P (u, uτ , us, uττ , usτ , uss, . . .) = 0, u(s, τ) = x(t), t = s+ v0τ

(a) Kink (b) Periodic wave (c) Solitary wave

Figure: Examples of traveling waves
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Meromorphic solutions

W-meromorphic functions

Elliptic functions
Meromorphic simply-periodic functions of the form
x(t) = R(exp{αt}), R(s) ∈ C(s), α ∈ C \ {0}

Theorem 6 (C. Briot, T. Bouquet)

Any W-meromorphic function x(t) satisfies an algebraic first order
ordinary differential equation F (x, xt) = 0, F (x, y) ∈ C[x, y].

Conclusion:

W-meromorphic solutions are algebraically invariant solutions
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Meromorphic solutions

(E) :
∑
j

Ej[x(t)] = 0, Ej[x(t)] = αjx
j0

{
dx

dt

}j1

. . .

{
dMx

dtM

}jM

Degree of the differential monomial Ej[x(t)]: degEj =
M∑

m=0

jm

The finiteness property

There exists only a finite number of formal Laurent series of the form

x(t) =
+∞∑
k=0

akt
k−p, p ∈ N that satisfy equation (E).
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Meromorphic solutions

Theorem 7 (A. Eremenko, 2007)

All transcendental meromorphic solutions of equation (E) are W-
meromorphic functions whenever (E) has the finiteness property and only
one dominant differential monomial.

Theorem 8 ( M. V. Demina, 2019)

All transcendental meromorphic solutions of equation (E) are W-
meromorphic functions whenever (E) has the finiteness property and only
two dominant differential monomials of the form xl(xt − βx), l ∈ N,
β ∈ C.
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Meromorphic solutions

Theorem 9 (M. V. Demina, 2022)

Let x(t) be a W-meromorphic solution of equation (E). Then there exist
an irreducible in C[x, y] \ C[x] polynomial F (x, y) and a number N ∈ N
such that x(t) satisfies the algebraic first-order ordinary differential
equation F (x, xt) = 0 and the polynomial F (x, y) takes the form

F (x, y) =

{
N∏
j=1

{y − yj,∞(x)}

}
+

.

In this expression y1,∞(x), . . ., yN,∞(x) are pairwise distinct Puiseux
series centered at the point x = ∞ that
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Meromorphic solutions

(A): solve equation (H);

(B): possess the leading-order terms given either by b
(j)
0 x or by

b
(j)
0 x(pj+1)/pj , where b

(j)
0 ̸= 0 and pj ∈ N is an order of a pole of

x(t);

(C): satisfy the conditions{
N∑
j=1

ykj,∞(x)

}
−

= 0, 1 ≤ k ≤ N.
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Meromorphic solutions

Explicit expressions of W-meromorphic functions
1 genus 0

w(z) =

K2∑
k=K1

hk exp (2ωkz)− ω
M∑

m=1

{
pm∑
k=1

(−1)ka
(m)
pm−k

(k − 1)!

dk−1

dzk−1

}
coth (ω{z − zm})

2 genus 1

w(z) =
M∑

m=1

{
pm∑
k=2

(−1)ka
(m)
pm−k

(k − 1)!

dk−2

dzk−2

}
℘(z − zm) +

M∑
m=1

a
(m)
pm−1ζ(z − zm) + h0,

M∑
m=1

a
(m)
pm−1 = 0.
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The integrability problem (2D)

Polynomial vector fields V ⊂ C(m+2)(m+1)−l × (C \ {0})l

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
, P (x, y), Q(x, y) ∈ C[x, y]

Polynomial systems of ordinary differential equations

xt = P (x, y), yt = Q(x, y)

Problems
1 Find the functional classes of first integrals that vector fields from

V can have.
2 Find all the vector fields from V having a first integral from some

functional class.
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The integrability problem (2D)

Functional classes of first integrals
rational;
meromorphic;
Darboux;
Liouvillian

Darboux functions

G(x, y) =
K∏
j=1

F
dj
j (x, y) exp{R(x, y)}, R(x, y) ∈ C(x, y),

F1(x, y), . . . , FK(x, y) ∈ C[x, y], d1, . . . , dK ∈ C
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The integrability problem (2D)

Liouvillian functions

belong to the following differential field extension of the field of rational
functions C(x, y):

C(x, y) = K0 ⊂ K1 ⊂ . . . ⊂ KM = L, Kj+1 = Kj(s), ∆ = {∂x, ∂y}

s is an algebraic element over Kj;

s is a transcendental element over Kj such that
∀δ ∈ ∆ ⇒ δs ∈ Kj;

s is a transcendental element over Kj such that

∀δ ∈ ∆ ⇒ δs

s
∈ Kj.
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The integrability problem (2D)

Differential form: ω = Q(x, y)dx− P (x, y)dy

Integrating factor: M(x, y) : D ⊂ C2 → C

M(x, y){Q(x, y)dx− P (x, y)dy} = dI(x, y);

M(x, y) ∈ C1(D) ⇒ XM = −div(X )M, div(X ) = Px +Qy;

symplectic form: Ω = M(x, y)dx ∧ dy, (x, y) ∈ D.
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The Darboux theory of integrability (2D)

Theorem 10 ( J. Chavarriga et al., 2003; C. Christopher et al., 2019)

A polynomial vector field X is Darboux integrable if and only if it has a
rational integrating factor.

Theorem 11 (M. F. Singer, 1992)

A polynomial vector field X is Liouvillian integrable if and only if it has a
Darboux integrating factor.
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The Darboux theory of integrability (2D)

Darboux functions

M(x, y) =
K∏
j=1

F
dj
j (x, y) exp{R(x, y)}, R(x, y) ∈ C(x, y),

F1(x, y), . . . , FK(x, y) ∈ C[x, y], d1, . . . , dK ∈ C

Theorem 12 (C. Christopher, 1999)

If a Darboux function M(x, y) is an integrating factor of a polynomial
vector field X , then F1(x, y),. . . , FK(x, y), exp{R(x, y)} are invariants
of the vector field X .

30 / 44



Invariants

Invariants of a polynomial vector field X

Algebraic invariants (Darboux polynomials)

F (x, y) ∈ C[x, y] \ C : XF = λ(x, y)F, λ ∈ C[x, y]

λ(x, y) is called the cofactor of F (x, y)

Exponential invariants (multiple algebraic invariants)

E(x, y) = exp

{
S(x, y)

T (x, y)

}
: XE = ϱ(x, y)E, S, T, ϱ ∈ C[x, y]

ϱ(x, y) is called the cofactor of E(x, y)
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The integrability problem (2D)

Integrability conditions

Darboux first integrals: I =
K∏
j=1

F
dj
j (x, y) exp

{
S(x, y)

T (x, y)

}
K∑
j=1

djλj(x, y) + ϱ(x, y) = 0;

Darboux integrating factors: M =
K∏
j=1

F
dj
j (x, y) exp

{
S(x, y)

T (x, y)

}
K∑
j=1

djλj(x, y) + ϱ(x, y) = −divX
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Finding the cofactor of an algebraic invariant

(H) : P (x, y)yx −Q(x, y) = 0

Theorem 13 (M. V. Demina, 2021)

The cofactor λ(x, y) of an algebraic invariant F (x, y) reads as

λ(x, y) =

{
+∞∑
m=0

N∑
j=1

{Q(x, y)− P (x, y)(yj,∞)x}(yj,∞)m

ym+1
+ P (x, y)

+∞∑
m=0

L∑
l=1

νlx
m
l

xm+1

}
+

,

where y1,∞, . . ., yN,∞ ∈ C∞{x} and satisfy equation (H), x1, . . ., xL are
pairwise distinct zeros of the polynomial µ(x) ∈ C[x] with multiplicities
ν1, . . ., νL ∈ N and L ∈ N ∪ {0}.
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Finding exponential invariants

Theorem 14 ( M. V. Demina, 2018)

Suppose that a polynomial vector field X admits an exponential invariant
E = exp(g/f) related to the algebraic invariant f(x, y) ∈ C[x, y] \ C[x]
with the cofactor λ(x, y) ∈ C[x, y], then for each non-zero Puiseux series
yj,∞(x) centered at the point x = ∞ that satisfies the equation f(x, y) =
0 there exists a number q ∈ Q such that the Puiseux series for the function
λ(x, yj,∞(x))/P (x, yj,∞(x)) centered at the point x = ∞ is

λ(x, yj,∞(x))

P (x, yj,∞(x))
=

+∞∑
k=n

bkx
− k

n , bn = q.
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The Puiseux integrability

Local invariants of a polynomial vector field X
Elementary algebraic invariants

F (x, y) = y − yj,x0
(x) ∈ Cx0

{x}[y], F (x, y) = yj,x0
(x) ∈ Cx0

{x},
XF = λ(x, y)F, λ(x, y) ∈ Cx0

{x}[y]
Elementary exponential invariants

E(x, y) = exp
[
gl(x)y

l
]
, gl(x) ∈ Cx0

{x}, l ∈ N ∪ {0};

E(x, y) = exp

[
u(x, y)

{y − yj,x0
(x)}n

]
, yj,x0

(x) ∈ Cx0
{x},

u(x, y) ∈ Cx0
{x}[y], n ∈ N; XE = ϱ(x, y)E, ϱ(x, y) ∈ Cx0

{x}[y]
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The Puiseux integrability

Definition (M. V. Demina, J. Giné, C. Valls, 2022)

A polynomial vector field X is called Puiseux integrable near a line {x =
x0, y ∈ C}, x0 ∈ C if it has a formal integrating factor

M(x, y) = exp

{
g(x, y)

f(x, y)

} K∏
j=1

F
dj
j (x, y), K ∈ N ∪ {0},

where F1(x, y), . . ., FK(x, y), g(x, y), and f(x, y) are Puiseux
polynomials from the ring Cx0

{x}[y] and d1, . . ., dK ∈ C.
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Polynomial Liénard equations

xtt + f(x)xt + g(x) = 0, f(x), g(x) ∈ C[x], f(x)g(x) ̸≡ 0;

xt = y, yt = −f(x)y − g(x).

Polynomial vector fields

X = y
∂

∂x
− (f(x)y + g(x))

∂

∂y

Abel differential equations

the second kind : yyx + f(x)y + g(x) = 0,

the first kind : wx − g(x)w3 − f(x)w2 = 0, w(x) =
1

y(x)
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Polynomial Liénard equations

Ln,m =

{
y
∂

∂x
− (f(x)y + g(x))

∂

∂y
: deg f = m, deg g = n

}
m ≥ n, (m,n) ̸= (0, 0)

1 Vector fields from Ln,m do not have algebraic invariants provided that
g(x) ̸= Cf(x), C ∈ C; [K. Odani, 1995].

2 Vector fields from Ln,m are not Liouvillian integrable provided that
g(x) ̸= Cf(x), C ∈ C; [J. Llibre, C. Valls, 2013].
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Polynomial Liénard equations

yyx + f(x)y + g(x) = 0, deg f = m, deg g = n

-2 0 2 m n

-1

0

1

2

3

q1

q2

Q
1

Q
2

Q
3

Q
4

-1 1

(a) : m < n < 2m+ 1

-2 0

-1

0

1

2

3

q1

q2

Q1 Q2

Q3

Q4

-1 1 m n

(b) : n = 2m+ 1

-2 0 m n

-1

0

1

2

3

q1

q2

Q1 Q2

Q3

-1 1

(c) : 2m+ 1 < n

Figure: Newton polygons
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Polynomial Liénard equations

Ln,m =

{
y
∂

∂x
− (f(x)y + g(x))

∂

∂y
: deg f = m, deg g = n

}
m < n, (m,n) ̸= (0, 1)

1 A generic vector field from Ln,m is not Liouvillian integrable.
2 Vector fields from Ln,m are not Darboux integrable provided that

n ̸= 2m+ 1.
3 For any n and m there exist vector fields from Ln,m that are

Liouvillian integrable.
4 The problem of Liouvillian integrability is solved completely provided

that n ̸= 2m + 1. In the case n = 2m + 1 our results are complete
in the non-resonant case.
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Polynomial Liénard equations

Example: a family of Liouvillian integrable vector fields from Ln,m

f(x) =
(k + 2l)

4
wl−1wx, g(x) =

k

8

(
w2l−1 + 4βwk−1

)
wx, w(x) ∈ C[x]

β ∈ C, degw =
m+ 1

l
,
n+ 1

m+ 1
=

k

l
, (l, k) = 1

Liouvillian first integral:

I(x, y) = 2F1

(
1

2
,
1

2
+

l

k
;
3

2
;−(2y + wl)2

4βwk

)
(2l − k)(2y + wl)

4kw
k
2β

1
2+

l
k

+ z
1
2−

l
k

Darboux integrating factor:M(x, y) = z−(
1
2+

l
k),z =

(
y + wl

2

)2

+βwk
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Invariant algebraic manifolds of codimension n− 2

Reduction of order E : E
(
x, dxdt , . . . ,

dnx
dtn

)
= 0

⇓ d2x
dt2

=y(x,xt)

H : H (x, s, yx, ys, . . .) = 0, s =
dx

dt

Compatible equations: F

(
x,

dx

dt
,
d2x

dt2

)
= 0 ⇒ F (x, s, y) = 0

F (x, s, y) ∈ C[x, s, y] is called an algebraic invariant

x(t) such that F

(
x,

dx

dt
,
d2x

dt2

)
= 0 is called an algebraically

invariant solution of equation (E)
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Invariant algebraic manifolds of codimension n− 2

Functional Puiseux series

Cx
∞{s} =

{
y(x, s) =

+∞∑
k=0

bk(x)s
l0
n − k

n , x0 = ∞

}
;

Cx
s0(x)

{s} =

{
y(x, s) =

+∞∑
k=0

ck(x)(s− s0(x))
l0
n + k

n , x0 ∈ C

}
Factorization

F (x, s, y) = µ(x, s)
N∏
j=1

(y − yj,∞(x, s)) , yj,∞(x, s) ∈ Cx
∞{s}
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Summary

1 The method of Puiseux series is a power and visual method of finding
algebraic invariants and solving the Poincaré problem.

2 The Darboux theory of integrability combined with the method of
Puiseux series provides the necessary and sufficient conditions of
Liouvillian integrability for polynomial systems in the plane.

3 The method of Puiseux series admits a generalization to higher
dimensions.
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