On local Gevrey integrability of differential systems

Xiang Zhang (张祥)

(Joint with Hao Wu, Shoujun Xu)

Shanghai Jiao Tong University (上海交通大学) xzhang@sjtu.edu.cn

Online GSD-UAB Seminar

January 30, 2023

・ 同 ト ・ ヨ ト ・ ヨ ト …

э.

- Background on local integrability
- New results on local Gevrey integrability
- Sketch proofs to the new results

・ 回 ト ・ ヨ ト ・ ヨ ト

æ

Local integrability for analytic vector fields

• is on existence, number and regularity of

functionally independent local first integrals.

As we know: at a regular point

• an autonomous C^r vector field is C^r completely integrable.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Local integrability for analytic vector fields

• is on existence, number and regularity of

functionally independent local first integrals.

As we know: at a regular point

• an autonomous C^r vector field is C^r completely integrable.

< 回 > < 回 > < 回 > .

For a singularity,

- the situation is completely different.
- the problem becomes much difficulty

The study on this problem has a long history, which

• can be traced back to Poincaré in 1891.

In this direction,

• there have appeared lots of published papers and books.

< 回 > < 回 > < 回 > .

Here lists some books related to our next study, see e.g.

- Bibikov [Lecture Notes Math. 702, 1979]
 Local theory of nonlinear analytic ODE
- Weigu LI [Science Press (in Chinese), 2000] Normal form theory and its applications
- Romanovski and Shafer [Birkhäuser 2009]

The center and cyclicity problems: a CAA

• Z. [Springer, 2017]

Integrability of Dynamical Systems: Algebra and Analysis

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

• Center-focus problem of planar analytic vector fields.

This problem is still open even for cubic systems.

Equivalent characterization for planar analytic VF,

- Existence of linear center
 - Existence of local analytic first integral.

Analytically orbital linearization at the singularity

Degenerate center could have no analytic first integrals.
 Mazzi and Sabatini [JDE 1998] on center of C^k systems

<<p>(日)、<</p>

• Center-focus problem of planar analytic vector fields.

This problem is still open even for cubic systems.

Equivalent characterization for planar analytic VF,

- Degenerate center could have no analytic first integrals.
 Mazzi and Sabatini [JDE 1998] on center of C^k systems

<<p>(日)、<</p>

• Center-focus problem of planar analytic vector fields.

This problem is still open even for cubic systems.

Equivalent characterization for planar analytic VF,

- Existence of linear center

Analytically orbital linearization at the singularity

Degenerate center could have no analytic first integrals.
 Mazzi and Sabatini [JDE 1998] on center of C^k systems

・ 同 ト ・ ヨ ト ・ ヨ ト

• Center-focus problem of planar analytic vector fields.

This problem is still open even for cubic systems.

Equivalent characterization for planar analytic VF,

- Existence of linear center

Analytically orbital linearization at the singularity

- Degenerate center could have no analytic first integrals.
 - ♠ Mazzi and Sabatini [JDE 1998] on center of C^k systems

・ 同 ト ・ ヨ ト ・ ヨ ト

For the local analytic differential system

$$\dot{x} = Ax + f(x), \qquad x \in (\mathbb{R}^n, 0)$$
(1)

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

3

with

- A an $n \times n$ real matrix,
- $f(x) = O(||x||^2) \in C^{\omega}(\mathbb{R}^n, 0)$ an analytic function

Denote by $\mathscr X$

• the vector field associated to system (1)

Let

• $\lambda = (\lambda_1, \dots, \lambda_n)$ be the *n*-tuple of eigenvalues of *A*.

For the local analytic differential system

$$\dot{x} = Ax + f(x), \qquad x \in (\mathbb{R}^n, 0)$$
(1)

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

with

- A an $n \times n$ real matrix,
- $f(x) = O(||x||^2) \in C^{\omega}(\mathbb{R}^n, 0)$ an analytic function

Denote by ${\mathscr X}$

the vector field associated to system (1)

Let

• $\lambda = (\lambda_1, \dots, \lambda_n)$ be the *n*-tuple of eigenvalues of *A*.

For the local analytic differential system

$$\dot{x} = Ax + f(x), \qquad x \in (\mathbb{R}^n, 0) \tag{1}$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

3

with

- A an $n \times n$ real matrix,
- $f(x) = O(||x||^2) \in C^{\omega}(\mathbb{R}^n, 0)$ an analytic function

Denote by ${\mathscr X}$

the vector field associated to system (1)

Let

• $\lambda = (\lambda_1, \dots, \lambda_n)$ be the *n*-tuple of eigenvalues of *A*.

Concrete descriptions on the progress.

Set

$$\mathcal{M}_{\lambda} := \left\{ m \in \mathbb{Z}^n_+ | \langle m, \lambda \rangle = 0, |m| \ge 2 \right\},$$

where

 $\bullet \ \mathbb{Z}_+$ is the set of nonnegative integers,

•
$$|m| = m_1 + \ldots + m_n$$
 for $m = (m_1, \ldots, m_n) \in \mathbb{Z}_+^n$.

Definition:

- If $\mathcal{M}_{\lambda} = \emptyset$, we call $\lambda \mathbb{Q}_+$ -non-resonant.
- If $\mathcal{M}_{\lambda} \neq \emptyset$, we call $\lambda \mathbb{Q}_+$ -resonant.

イロン 不良 とくほう 不良 とうせい

Concrete descriptions on the progress.

Set

$$\mathcal{M}_{\boldsymbol{\lambda}} := \left\{ m \in \mathbb{Z}_{+}^{n} | \langle m, \boldsymbol{\lambda} \rangle = 0, \ |m| \geq 2 \right\},$$

where

• \mathbb{Z}_+ is the set of nonnegative integers,

•
$$|m| = m_1 + \ldots + m_n$$
 for $m = (m_1, \ldots, m_n) \in \mathbb{Z}_+^n$.

Definition:

- If $\mathcal{M}_{\lambda} = \emptyset$, we call $\lambda \mathbb{Q}_+$ -non-resonant.
- If $\mathcal{M}_{\lambda} \neq \emptyset$, we call $\lambda \mathbb{Q}_+$ -resonant.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Concrete descriptions on the progress.

Set

$$\mathcal{M}_{\boldsymbol{\lambda}} := \left\{ m \in \mathbb{Z}_{+}^{n} | \langle m, \boldsymbol{\lambda} \rangle = 0, \ |m| \geq 2 \right\},$$

where

• \mathbb{Z}_+ is the set of nonnegative integers,

•
$$|m| = m_1 + \ldots + m_n$$
 for $m = (m_1, \ldots, m_n) \in \mathbb{Z}_+^n$.

Definition:

- If $\mathcal{M}_{\lambda} = \emptyset$, we call $\lambda \mathbb{Q}_+$ -non-resonant.
- If $\mathcal{M}_{\lambda} \neq \emptyset$, we call $\lambda \mathbb{Q}_+$ -resonant.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

Poincaré in 1891 proved the next result in nonresoant case.

Theorem (Poincaré Theorem)

If system (1) is analytic, and

• the eigenvalues λ of A are non-resonant,

then

• the system has neither analytic nor formal first integrals.

In non-resonant case, there are some related results, see e.g.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

- Furta [ZAMP, 1996]
- Shi and Li [ZAMP 2001]

Poincaré in 1891 proved the next result in nonresoant case.

Theorem (Poincaré Theorem)

If system (1) is analytic, and

• the eigenvalues λ of A are non-resonant,

then

• the system has neither analytic nor formal first integrals.

In non-resonant case, there are some related results, see e.g.

ヘロト ヘアト ヘビト ヘビト

- Furta [ZAMP, 1996]
- Shi and Li [ZAMP 2001]

Poincaré in 1891 proved the next result in nonresoant case.

Theorem (Poincaré Theorem)

If system (1) is analytic, and

• the eigenvalues λ of A are non-resonant,

then

• the system has neither analytic nor formal first integrals.

In non-resonant case, there are some related results, see e.g.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Furta [ZAMP, 1996]
- Shi and Li [ZAMP 2001]

Non-resonance cannot prohibit existence of C[∞] first integrals

```
Proposition 1 [Wu, Xu, Z, preprint, 2023]
The following statements hold.
(i) If H is a C<sup>∞</sup> local first integral of a C<sup>∞</sup> vector field F, then it generates a C<sup>∞</sup> ∞-flat local first integral Ĥ for F.
(ii) There exists F ∈ C<sup>∞</sup>(U), which has no a formal first integral but a C<sup>∞</sup> ∞-flat one.
```

ヘロト ヘアト ヘビト ヘビト

Non-resonance cannot prohibit existence of C[∞] first integrals

Proposition 1 [Wu, Xu, Z. preprint, 2023]

The following statements hold.

 (i) If *H* is a C[∞] local first integral of a C[∞] vector field *F*, then it generates a C[∞] ∞-flat local first integral *Ĥ* for *F*.

(ii) There exists *F* ∈ C^ω(U), which has no a formal first integral but a C[∞] ∞-flat one.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

• the eigenvalues λ must be resonant

In two dimension, the nondegenerate case is

$$\lambda = (\sqrt{-1}, -\sqrt{-1})$$
, or $\lambda = (q, -p), q, p \in \mathbb{N}$.

• The analytic integrability was completely characterized only for quadratic differential systems in the cases of center and weak saddle.

The degenerate case

- One eigenvalue is equal to zero
- Two eigenvalues both vanish: nilpotent case, A = 0 case

・ 回 ト ・ ヨ ト ・ ヨ ト

• the eigenvalues λ must be resonant

In two dimension, the nondegenerate case is

$$oldsymbol{\lambda}=(\sqrt{-1},-\sqrt{-1}),$$
 or $oldsymbol{\lambda}=(q,-p),$ $q,p\in\mathbb{N}.$

• The analytic integrability was completely characterized only for quadratic differential systems in the cases of center and weak saddle.

The degenerate case

- One eigenvalue is equal to zero
- Two eigenvalues both vanish: nilpotent case, A = 0 case

・ 回 ト ・ ヨ ト ・ ヨ ト

• the eigenvalues λ must be resonant

In two dimension, the nondegenerate case is

$$\lambda=(\sqrt{-1},-\sqrt{-1}),$$
 or $\lambda=(q,-p),$ $q,p\in\mathbb{N}.$

• The analytic integrability was completely characterized only for quadratic differential systems in the cases of center and weak saddle.

The degenerate case

- One eigenvalue is equal to zero
- Two eigenvalues both vanish: nilpotent case, A = 0 case

・ 回 ト ・ ヨ ト ・ ヨ ト

• the eigenvalues λ must be resonant

In two dimension, the nondegenerate case is

$$\lambda=(\sqrt{-1},-\sqrt{-1}),$$
 or $\lambda=(q,-p),$ $q,p\in\mathbb{N}.$

• The analytic integrability was completely characterized only for quadratic differential systems in the cases of center and weak saddle.

The degenerate case

- One eigenvalue is equal to zero
- Two eigenvalues both vanish: nilpotent case, A = 0 case

・ 同 ト ・ ヨ ト ・ ヨ ト

For higher dimensional system (1) with λ resonant, there appeared some necessary conditions:

• Chen, Yi and Z. [JDE 2008] provided

An optimal upper bound on the numbers of functionally independent analytic first integrals.

Shi [JMAA 2007] proved nonexistence of

♠ meromorphic first integrals in ℚ-nonresoant.

• Cong, Llibre and Z. [JDE 2011] provided

A an optimal upper bound on the numbers of functionally independent meromorphic first integrals in Q-resonant.

くぼう くほう くほう

= 990

On equivalent characterization of integrability via normalization:

- Zung [Math. Res. Lett. 2002] provided a relation between analytic integrability and convergence of normalization to Poincaré-Dulac normal form.
- Z. [JDE 2013] established necessary and sufficient conditions on existence of analytic normalization and local analytic integrability
- Du, Romanovski and **Z.** [JDE 2016] proved the existence of analytic normalization of partly analytic integrable systems at a singularity with some additional conditions.
- Zung [Ann. Math. 2005] provided a relation between analytic integrable Hamiltonian systems and convergence of normalization to Birkhoff normal form.

▲圖> ▲ ヨ> ▲ ヨ>

On equivalent characterization of integrability via normalization:

- Zung [Math. Res. Lett. 2002] provided a relation between analytic integrability and convergence of normalization to Poincaré-Dulac normal form.
- Z. [JDE 2013] established necessary and sufficient conditions on existence of analytic normalization and local analytic integrability
- Du, Romanovski and Z. [JDE 2016] proved the existence of analytic normalization of partly analytic integrable systems at a singularity with some additional conditions.
- Zung [Ann. Math. 2005] provided a relation between analytic integrable Hamiltonian systems and convergence of normalization to Birkhoff normal form.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Li, Llibre and Z. [ZAMP 2003] under the condition:

$$\lambda_1 = 0$$
 and $\sum_{j=2}^n m_j \lambda_j \neq 0$ for $m_j \in \mathbb{Z}_+$ and $\sum_{j=2}^n m_j \geq 1$. (2)

obtained the next result.

Theorem A (Li, Llibre and ♥. ZAMP 2003)
Assume that system (1) is analytic and the conditions (2) hold.
(a) For n = 2, system (1) has an analytic first integral in (ℝⁿ,0)
⇔ the singular point x = 0 is not isolated.
(b) For n > 2, system (1) has a formal first integral in (ℝⁿ,0)
⇔ the singular point x = 0 is not isolated.

イロト イポト イヨト イヨ

Li, Llibre and Z. [ZAMP 2003] under the condition:

$$\lambda_1 = 0$$
 and $\sum_{j=2}^n m_j \lambda_j \neq 0$ for $m_j \in \mathbb{Z}_+$ and $\sum_{j=2}^n m_j \geq 1$. (2)

obtained the next result.

Theorem A (Li, Llibre and ZAMP 2003) Assume that system (1) is analytic and the conditions (2) hold. (a) For n = 2, system (1) has an analytic first integral in $(\mathbb{R}^n, 0)$ \iff the singular point x = 0 is not isolated. (b) For n > 2, system (1) has a formal first integral in $(\mathbb{R}^n, 0)$ \iff the singular point x = 0 is not isolated.

・ 戸 ・ ・ 三 ・ ・

Li, Llibre and Z. [ZAMP 2003] under the condition:

$$\lambda_1 = 0$$
 and $\sum_{j=2}^n m_j \lambda_j \neq 0$ for $m_j \in \mathbb{Z}_+$ and $\sum_{j=2}^n m_j \geq 1$. (2)

obtained the next result.

Theorem A (Li, Llibre and Z. ZAMP 2003)

Assume that system (1) is analytic and the conditions (2) hold.

(a) For n = 2, system (1) has an analytic first integral in $(\mathbb{R}^n, 0)$ \iff the singular point x = 0 is not isolated.

(b) For n > 2, system (1) has a formal first integral in $(\mathbb{R}^n, 0)$ \iff the singular point x = 0 is not isolated.

ヘロト 人間 ト ヘヨト ヘヨト

3

Li, Llibre and Z. [ZAMP 2003] under the condition:

$$\lambda_1 = 0$$
 and $\sum_{j=2}^n m_j \lambda_j \neq 0$ for $m_j \in \mathbb{Z}_+$ and $\sum_{j=2}^n m_j \geq 1$. (2)

obtained the next result.

Theorem A (Li, Llibre and Z. ZAMP 2003)

Assume that system (1) is analytic and the conditions (2) hold.

(a) For n = 2, system (1) has an analytic first integral in $(\mathbb{R}^n, 0)$ \iff the singular point x = 0 is not isolated.

(b) For n > 2, system (1) has a formal first integral in $(\mathbb{R}^n, 0)$ \iff the singular point x = 0 is not isolated.

ヘロト ヘアト ヘビト ヘビト

= 990

Li, Llibre and Z. [ZAMP 2003] under the condition:

$$\lambda_1 = 0$$
 and $\sum_{j=2}^n m_j \lambda_j \neq 0$ for $m_j \in \mathbb{Z}_+$ and $\sum_{j=2}^n m_j \geq 1$. (2)

obtained the next result.

Theorem A (Li, Llibre and Z. ZAMP 2003)

Assume that system (1) is analytic and the conditions (2) hold.

(a) For n = 2, system (1) has an analytic first integral in $(\mathbb{R}^n, 0)$ \iff the singular point x = 0 is not isolated.

(b) For n > 2, system (1) has a formal first integral in $(\mathbb{R}^n, 0)$ \iff the singular point x = 0 is not isolated.

ヘロト ヘアト ヘビト ヘビト

3

• For $n \ge 3$, the next problem remains open since 2003:

Is it true that

 the analytic differential system (1) under Theorem A(b) has an analytic first integral in (Rⁿ,0)?

・ 回 ト ・ ヨ ト ・ ヨ ト

The next results provide a partial answer to this problem.

• For $n \ge 3$, the next problem remains open since 2003:

Is it true that

 the analytic differential system (1) under Theorem A(b) has an analytic first integral in (Rⁿ,0)?

・ 回 ト ・ ヨ ト ・ ヨ ト

The next results provide a partial answer to this problem.

• For $n \ge 3$, the next problem remains open since 2003:

Is it true that

 the analytic differential system (1) under Theorem A(b) has an analytic first integral in (Rⁿ,0)?

・ 同 ト ・ ヨ ト ・ ヨ ト …

The next results provide a partial answer to this problem.

Theorem B [Z. JDE 2017]

For the analytic system (1), satisfying the condition (2).

- (*a*) If the real parts of λ₂,..., λ_n all have the same sign, then system (1) has an analytic first integral in (ℝⁿ, 0)
 the singular point x = 0 is not isolated.
- (*b*) If $\lambda_2, \ldots, \lambda_n$ have both positive and negative real parts, there exist analytic differential systems of form (1) which have no analytic first integrals in ($\mathbb{R}^n, 0$).

<<p>(日)、<</p>

Theorem B [Z. JDE 2017]

For the analytic system (1), satisfying the condition (2).

(a) If the real parts of λ₂,...,λ_n all have the same sign, then system (1) has an analytic first integral in (ℝⁿ,0)
 the singular point x = 0 is not isolated.

(*b*) If $\lambda_2, ..., \lambda_n$ have both positive and negative real parts, there exist analytic differential systems of form (1) which have no analytic first integrals in ($\mathbb{R}^n, 0$).

<ロ> (四) (四) (三) (三) (三) (三)

Theorem B [Z. JDE 2017]

For the analytic system (1), satisfying the condition (2).

(a) If the real parts of λ₂,...,λ_n all have the same sign, then system (1) has an analytic first integral in (ℝⁿ,0)
the singular point x = 0 is not isolated.

(*b*) If λ₂,...,λ_n have both positive and negative real parts, there exist analytic differential systems of form (1) which have no analytic first integrals in (ℝⁿ,0).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

According to Theorems A and B, under

Conditions (2) + singularity nonisolated

Problems to be solved:

- 1. Does there always exist a C^{∞} first integral?
- 2. Provide a measure on the set of analytic systems which have an analytic first integral.
- 3. Characterize the class of analytic differential systems which have an analytic first integral.

(雪) (ヨ) (ヨ)

Answer to Problem 1:

Theorem C (Z. JDE 2021)

Under the conditions (2),

the analytic system (1) has a C[∞] first integral in (ℝⁿ,0)
 the singularity at the origin is non-isolated, and the formal first integral is nontrivial.

・ 同 ト ・ ヨ ト ・ ヨ ト …

1

Answer related to Problem 2.

Let \Re be the set of analytic differential systems of type (1)

- with the same linear part
- satisfying the conditions (2).
- with a nonisolated singularity at the origin.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Answer related to Problem 2.

Let \mathfrak{K} be the set of analytic differential systems of type (1)

- with the same linear part
- satisfying the conditions (2).
- with a nonisolated singularity at the origin.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

æ

Theorem D [JDE 2021]

Let: \mathcal{K} be any finite dimensional subspace of \mathfrak{K} . The following statements hold.

(a) If *X* contains an element, which has only formal but not analytic first integral near the origin, then all elements in *X* except a **pluripolar subset** also have this property.

(b) If *H* has a **nonpluripolar subset** whose any element has an analytic first integral near the origin, then all systems in *H* have this property.

▲□ ▶ ▲ 臣 ▶ ▲ 臣

Theorem D [JDE 2021]

Let: \mathcal{K} be any finite dimensional subspace of \mathfrak{K} . The following statements hold.

- (a) If *X* contains an element, which has only formal but not analytic first integral near the origin, then all elements in *X* except a pluripolar subset also have this property.
- (b) If *K* has a **nonpluripolar subset** whose any element has an analytic first integral near the origin, then all systems in *K* have this property.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ →

Recall that

 If systems (1) are polynomials of a bounded degree, then f is finite dimensional.

Remark:

- A pluripolar set is a subset of \mathbb{C}^m for some $m \in \mathbb{N}$
- A pluripolar set is of Lebesgure measure zero
- Countable union of pluripolar sets is also a pluripolar set

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

Recall that

 If systems (1) are polynomials of a bounded degree, then f is finite dimensional.

Remark:

- A pluripolar set is a subset of \mathbb{C}^m for some $m \in \mathbb{N}$
- A pluripolar set is of Lebesgure measure zero
- Countable union of pluripolar sets is also a pluripolar set

(日本) (日本) (日本)

= 990

- there exist Gevrey class \mathscr{G}_s $(s \ge 1)$ and C^{∞}
- *G*₁ ⊆ *G*_s (s ≥ 1) ⊆ C[∞], with *G*₁ analytic class
 and C[∞] = 𝔽ⁿ[[x]]/ ~ with ~ the set of C[∞] ∞-flat ones

Question: In the previous setting on the eigenvalues

• what about Gevrey first integrals?

Recall that a Gevrey first integral

• is a first integral, which is a Gevrey function

ヘロン 人間 とくほ とくほとう

- there exist Gevrey class \mathscr{G}_s $(s \ge 1)$ and C^{∞}
- G₁ ⊆ G_s (s ≥ 1) ⊆ C[∞], with G₁ analytic class
 and C[∞] = Fⁿ[[x]]/ ~ with ~ the set of C[∞] ∞-flat ones

Question: In the previous setting on the eigenvalueswhat about Gevrey first integrals?

Recall that a Gevrey first integral

• is a first integral, which is a Gevrey function

- there exist Gevrey class \mathscr{G}_s $(s \ge 1)$ and C^{∞}
- G₁ ⊆ G_s (s ≥ 1) ⊆ C[∞], with G₁ analytic class
 and C[∞] = Fⁿ[[x]]/ ~ with ~ the set of C[∞] ∞-flat ones

Question: In the previous setting on the eigenvalues

• what about Gevrey first integrals?

Recall that a Gevrey first integral

• is a first integral, which is a Gevrey function

- there exist Gevrey class \mathscr{G}_s $(s \ge 1)$ and C^{∞}
- G₁ ⊆ G_s (s ≥ 1) ⊆ C[∞], with G₁ analytic class
 and C[∞] = Fⁿ[[x]]/ ~ with ~ the set of C[∞] ∞-flat ones

Question: In the previous setting on the eigenvalues

• what about Gevrey first integrals?

Recall that a Gevrey first integral

• is a first integral, which is a Gevrey function

Definition: For $s \ge 1$,

a Gevrey-s function defined on an open set $\Omega \subset \mathbb{R}^n$

• is a smooth complex-valued function, satisfying that for any compact set $K \subset \Omega$, $\exists M, C > 0$ such that for all $k \in \mathbb{Z}^n_+$ $\sup |D^k f(x)| \leq MC^{[k]}(|k|!)^s$

$$\sup_{x\in K} \left| D^k f(x) \right| \le M C^{|k|} (|k|!)^s$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Denoted by $\mathscr{G}_{s}(\Omega)$

• the class of Gevrey-s functions defined on Ω.

According to the conditions on the eigenvalues

one is zero and others are nonresonant

for simplicity, we write the system in

$$\frac{dx}{dt} = Ax + f_1(x, y), \quad \frac{dy}{dt} = f_2(x, y)$$
(3)

with

- $x \in \mathbb{R}^d$, $y \in \mathbb{R}$, and
- $f = (f_1, f_2) = O(|x|^2 + |y|^2)$ analytic as $(x, y) \to 0$.

• A has eigenvalues λ , which are nonresonant

$$k \cdot \lambda \neq 0, \quad k \in \mathbb{Z}^d_+$$
 (4)

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

By non-isolate of the singularity,

♠ system (3) can be turned to

$$\frac{dx}{dt} = Ax + \hat{f}_1(x, y), \quad \frac{dy}{dt} = \hat{f}_2(x, y),$$
 (5)

with

$$\hat{f}_1(0,y) \equiv 0$$
 and $\hat{f}_2(0,y) \equiv 0$.

The corresponding formal normal form is

$$\frac{dx}{dt} = Ax + g(x, y), \quad \frac{dy}{dt} = 0,$$
(6)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

where $g(x,y) = \sum_{k,j,l \in \Lambda_r} g_{(k,j),l} x^k y^j e_l$ with e_l the *l*-th unit vector.

Denote the resonant set by

 $\Lambda_r = \left\{ (k, j, l) \mid k \cdot \lambda = \lambda_l, \ |k| + j \ge 2, \quad k \in \mathbb{Z}_+^d, \ j \in \mathbb{Z}_+, \ l \in \{1, \dots, d\} \right\}$

Define the numbers

$$q = \min\{|k| \mid (k,j,l) \in \Lambda_r, \ g_{(k,j),l} \neq 0, \ \exists j,l\},$$
(7)

and

$$q^* = \min\{|k| + j \mid (k, j, l) \in \Lambda_r, \ g_{(k, j), l} \neq 0, \ \exists l\}.$$
 (8)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Remark:

 These two quantities are invariant by near-identity local coordinate substitutions Formulating the function

$$c^{-1}\Phi(t) = \max\{|k \cdot \lambda|^{-1} \mid |k| \le t, \ k \in \mathbb{Z}_+^d\}$$
(9)

with

- Φ an increasing positive function
- *c* normalizes Φ such that $\Phi(1) = 1$.

Remark:

• When $\Phi(t) = t^{\mu}$, it is of the diophantine type.

• $\Phi(t)$ satisfying

$$\int_{1}^{\infty} \frac{\ln \Phi(t)}{t^2} dt < \infty,$$

the small divisor condition, is of the Bruno-Rüssmann type.

(本部) (本語) (本語) (二語)

Formulating the function

$$c^{-1}\Phi(t) = \max\{|k \cdot \lambda|^{-1} \mid |k| \le t, \ k \in \mathbb{Z}_+^d\}$$
(9)

with

- Φ an increasing positive function
- *c* normalizes Φ such that $\Phi(1) = 1$.

Remark:

- When $\Phi(t) = t^{\mu}$, it is of the diophantine type.
- $\Phi(t)$ satisfying

$$\int_1^\infty \frac{\ln \Phi(t)}{t^2} dt < \infty,$$

the small divisor condition, is of the Bruno-Rüssmann type.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Theorem 1 [Wu, Xu, Z. preprint, 2023]

Assume that

- system (3) is Gevrey-s smooth, with $s \ge 1$
- λ is non-resonant, i.e. the condition (4)
- the singularity at the origin is non-isolated

The following statements hold.

(a) If the real parts of λ have the same sign, then
 system (3) has local Gevrey-s smooth first integrals
 with non-zero formal parts.

▲御 ▶ ▲ 臣 ▶ ▲

Theorem 1 [Wu, Xu, Z. preprint, 2023]

Assume that

- system (3) is Gevrey-s smooth, with $s \ge 1$
- λ is non-resonant, i.e. the condition (4)
- the singularity at the origin is non-isolated

The following statements hold.

(a) If the real parts of λ have the same sign, then
 system (3) has local Gevrey-s smooth first integrals
 with non-zero formal parts.

▲ □ ▶ ▲ □ ▶ ▲

Theorem 1 (Continued)

(b) Assume that

 $\Diamond A$ is in the diagonal form, and

 \diamondsuit the divisor $\Phi(t) = t^{\mu}$ for some constant $\mu > 0$.

One has the next results.

(b₁) If $\partial_x \hat{f}_1(0, y) \equiv 0$ in (5) and $q < \infty$ given by (7), there exist Iocal Gevrey-s* smooth first integrals with non-zero formal parts, where $s^* = \max\left\{s, \frac{\mu+q}{q-1}\right\}$. (b_2) If $q^* < \infty$ given by (8), there exist ♠ formal Gevrey-s* first integrals with non-zero formal parts, where $s^* = \max\left\{s-1, \frac{\mu+1}{a^*-1}\right\}$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

э

Remark:

- Theorem 1(a) is inherited from the analytic integrability property, which admits no loss of regularity.
- Theorem 1(b) shows that

♠ difference of linear parts affect loss of Gevrey regularity.

- (b1) implies that the divisor condition leads to no shrinking of the region for the variable x.
- (*b*₂) indicates that for the higher-order perturbation, we have to shrink the whole region.
- At this moment, we cannot explain what exactly happens between (*b*₁) and (*b*₂).

Preparation to prove Theorem 1

For the Taylor expansion of f at P=(0,a) $f(X)=\sum f_{k,l}(X-P)^k e_l,$

the weighted majorant operator is defined as

$$\mathscr{M}_{P}f(X) = \sum |f_{k,l}| \frac{\mathbf{E}(|\mathbf{k}|)(X-P)^{k} e_{l}}{(X-P)^{k}} e_{l}$$

with the weight function $E(t) = e^{\omega(t)}$, where $\omega(t) = -\tau t \ln t$ satisfying

$$\boldsymbol{\phi} \ \boldsymbol{\omega}(0) = \boldsymbol{\omega}(1) = 0, \ \boldsymbol{\omega}'(t) \leq 0, \text{ and } \boldsymbol{\omega}''(t) \leq 0 \text{ for } t \geq 1$$

♠ $\tau \ge 0$ describes the indices of Gevrey smoothness.

Notice that

$$\mathcal{M}_{P}f = (\mathcal{M}_{P}f_{1}, \cdots, \mathcal{M}_{P}f_{d})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Following Pöschel [JDDE 2021],

 \blacklozenge introduce the norm for f

$$|f|_{U,\tau,\rho} = \sup_{P \in U} \sum_{l} \mathscr{M}_{P} f_{l}(\rho, \cdots, \rho) < \infty,$$
(10)

with U the domain, $\rho>0$ a number, and .

$$\mathcal{M}_{P}f(\boldsymbol{\rho},\ldots,\boldsymbol{\rho}) = \sum |f_{k,l}|E(|k|)\boldsymbol{\rho}^{|k|}e_{l},$$

Remark:

- For the case $\tau = 0$, ρ is related to analytical radius
- For the case $\tau > 0$, it makes no real geometry meaning.

• So U and ρ can be independent.

• $|\cdot|_{P,\tau,\rho}$ is just the formal Gevrey- τ norm, provided that

 \blacklozenge U degenerates to a point P.

Following Pöschel [JDDE 2021],

 \blacklozenge introduce the norm for f

$$|f|_{U,\tau,\rho} = \sup_{P \in U} \sum_{l} \mathscr{M}_{P} f_{l}(\rho, \cdots, \rho) < \infty,$$
(10)

with U the domain, $\rho>0$ a number, and .

$$\mathscr{M}_{P}f(\rho,\ldots,\rho) = \sum |f_{k,l}|E(|k|)\rho^{|k|}e_{l},$$

Remark:

- For the case $\tau = 0$, ρ is related to analytical radius
- For the case $\tau > 0$, it makes no real geometry meaning.
 - \blacklozenge So *U* and ρ can be independent.
- $|\cdot|_{P,\tau,\rho}$ is just the formal Gevrey- τ norm, provided that
 - \blacklozenge U degenerates to a point P.

Here, the partial formal Gevrey norms is needed. Set

•
$$X = (x, y)$$
 with $x \in \mathbb{C}^d$ and $y \in \mathbb{C}$

•
$$U_r = \{z \mid |z| \le r\} \subset \mathbb{C} \text{ for } r > 0$$

•
$$\hat{U}_{\rho} = \{0\} \times U_{\rho} \subseteq \mathbb{C}^d \times \mathbb{C} \text{ for } \rho > 0.$$

The norm utilized here is of the mixing type

$$||f||_{\tau,\rho} = \sup_{(x,y)\in\hat{U}_{\rho}} \sum_{l} \mathscr{M}_{(x,y)} f_{l}(\rho,\cdots,\rho) < \infty.$$
(11)

Denoted by

$$\mathscr{X}_{\rho} = \left\{ f(x,y) = \sum_{|j|\geq 1,l} f_{j,l}(y) x^{j} e_{l} \mid f_{j,l}(y) \in \mathscr{G}_{\tau+1}(U_{\rho}), \ \|f\|_{\tau,\rho} < \infty \right\},$$

which is the set of functions admitting

formal Gevrey- τ in $x \in \mathbb{C}^d$ and Gevrey- $(\tau + 1)$ in $y \in \mathbb{C}$

Note that this definition is equivalent to the classical one

$$[f]_{\tau,\rho} := \sum_{|j|\ge 1,l} |f_{j,l}|_{U_{\rho},\tau,\rho} \frac{\rho^{|j|}}{(|j|!)^{\tau}} = \sum_{i,|j|\ge 1,l} \sup_{y\in U_{\rho}} |\partial_{y}^{i}f_{j,l}(y)| \frac{\rho^{i+|j|}}{(i!)^{\tau+1}(|j|!)^{\tau}},$$
(12)

with

$$f(x,y) = \sum_{j,l} f_{j,l}(y) x^j e_l$$
, and $j! = j_1! \cdots j_d!$ for $j = (j_1, \dots, j_d)$,

where

$$f_{j,l}(y) = \frac{1}{j!} \partial_x^j f(x, y) e_l|_{x=0} \in \mathscr{G}_{\tau+1}(U_{\rho}).$$

Here

$$|f_{j,l}|_{U_{\rho},\tau,\rho} = \sum_{i} \sup_{y \in U_{\rho}} |\partial_{y}^{i} f_{j,l}(y)| \frac{\rho^{i}}{(i!)^{\tau+1}},$$

イロン 不得 とくほど 不良 とうほう

is the classical Gevrey- $(\tau + 1)$ norm.

$$\mathscr{X}_{\rho}$$
 has the next property.

Lemma 1

The space $\{\mathscr{X}_{\rho}, \|\cdot\|_{\tau,\rho}\}$ is complete.

Proof: For any $f \in \mathscr{X}_{\rho}$, we build

$$\hat{f}(x,y) = \sum_{|j| \ge 1,l} \hat{f}_{j,l}(y) x^{j} e_{l}, \quad \hat{f}_{j,l} = |f_{j,l}|_{U_{\rho},\tau,\rho} \frac{\rho^{|j|}}{(|j|!)^{\tau}},$$

which yields a complete Banach space l^1 , with the norm

$$\|\widehat{f}\| = \sum_{j,l} |\widehat{f}_{j,l}|.$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

э

So, the space $\{\mathscr{X}_{\rho}, \|\cdot\|_{\tau,\rho}\}$ is a weighted l^1 .

$$\mathscr{X}_{\rho}$$
 has the next property.

Lemma 1

The space $\{\mathscr{X}_{\rho}, \|\cdot\|_{\tau,\rho}\}$ is complete.

Proof: For any $f \in \mathscr{X}_{\rho}$, we build

$$\hat{f}(x,y) = \sum_{|j|\ge 1,l} \hat{f}_{j,l}(y) x^{j} e_{l}, \quad \hat{f}_{j,l} = |f_{j,l}|_{U_{\rho},\tau,\rho} \frac{\rho^{|j|}}{(|j|!)^{\tau}},$$

which yields a complete Banach space l^1 , with the norm

$$\|\widehat{f}\| = \sum_{j,l} |\widehat{f}_{j,l}|.$$

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

So, the space $\{\mathscr{X}_{\rho}, \|\cdot\|_{\tau,\rho}\}$ is a weighted l^1 .

The next is a key point for general ultra-differential norms.

Lemma 2

Assume that $\omega(u)$ is a C^2 function satisfying

$$\omega(1) = 0$$
 and $\omega''(u) \le 0$ for $u \ge 1$.

Let $E(u) = e^{\omega(u)}$ and $v_i \ge 1$ for all *i*. Then we have

 $E(v_1 + v_2) \le E(v_1)E(v_2)$

 $E\left(\sum_{i=1}^{t} v_i\right) \leq E(t) \prod_{i=1}^{t} E(v_i).$

When ω' is non-positive decreasing and $|\omega''| \le M$

 $E(u+v-\gamma) \leq c \kappa (u+v-\gamma) E(u) E(v),$

for $u \ge \beta \ge 1$, $v \ge \beta \ge 1$, and $0 \le \gamma < \beta$, where

 $\kappa(u) = e^{\omega'(u-\gamma)(\beta-\gamma)}, c = c(\beta,\gamma) = \exp(\omega(\beta) + M(\beta-\gamma)^2/2).$

<ロ> (四) (四) (三) (三) (三) (三)

By this lemma, one can prove the next properties on norms.

Lemma 3

For $f, g \in \mathscr{X}_{\rho}$, the following statements hold.

(i) ||f ⋅ g||_{τ,ρ} ≤ ||f||_{τ,ρ} ||g||_{τ,ρ}, where ⋅ denotes the inner product.
(ii) ||f ∘ (id + g)||_{τ,ρ} ≤ ||f||_{τ,κ}, provided (d+2)ρ + ||g||_{τ,ρ} ≤ κ < ∞, where ∘ represents composition.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Finally, handling the Cauchy type estimate.

For any $f \in \mathscr{X}_{\rho}$, we define the power shift operator \mathscr{P}_{μ} :

$$\mathscr{P}_{\mu}f = \sum_{j,l} |j|^{\mu} |f_{j,l}(y)| x^{j} e_{l}.$$
 (13)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

for the expansion $f(x, y) = \sum f_{j,l}(y) x^j e_l$.

Lemma 4

Assume that

• $f, g \in \mathscr{X}_{\rho}$ are scale functions,

• $0 < \delta < 1$, and c is that in Lemma 2.

The following statements hold.

(i) If
$$||f||_{\tau,\rho}$$
, $||g||_{\tau,\rho e^{-\delta}} < \infty$, then
 $||\partial_y f \cdot g||_{\tau,\rho e^{-\delta}} \le c\delta^{-(\tau+1)}\rho^{-1}||f||_{\tau,\rho}||g||_{\tau,\rho e^{-\delta}}$.
(ii) If $f(0,y) = g(0,y) = 0$, $\partial_x f(0,y) = \partial_x g(0,y) = 0$, and
 $||f||_{\tau,\rho}$, $||g||_{\tau,\rho e^{-\delta}} < \infty$, then
 $||\partial_{x_i} f \cdot g||_{\tau,\rho e^{-\delta}} \le c\delta^{-1}\rho^{-1}||f||_{\tau,\rho}||g||_{\tau,\rho e^{-\delta}}$.

・ 回 ト ・ ヨ ト ・ ヨ ト

э

Lemma 4 (Continued)

(iii) If
$$f(0,y) = g(0,y) = 0$$
, $\partial_x^s f(0,y) = \partial_x^s g(0,y) = 0$ for
 $s = 1, \dots, q - 1$ and $2 \le q \in \mathbb{Z}_+$,
 $\|f\|_{\tau,\rho}, \|g\|_{\tau,\rho} < \infty$, and $\tau \ge \frac{\mu+1}{q-1}$, then
 $\|\mathscr{P}_{\mu}(\partial_{x_i}f \cdot g)\|_{\tau,\rho} \le c\rho^{-1}\|f\|_{\tau,\rho}\|g\|_{\tau,\rho}$.

The proof follows by using Lemmas 2 and 3, together with some technique estimate

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

To apply the homological equation, we need the next property

Proposition 2

Under the condition (4), the resonant set

$$\Lambda_r = \{(j,l) \mid j \cdot \lambda = \lambda_l, j \in \mathbb{Z}^d_+, |j| \ge 2, l = 1, \cdots, d\},\$$

イロト イポト イヨト イヨト

3

has finitely many elements, i.e. $\sharp \Lambda_r < \infty$.

The proof follows by contrary and the drawer principle

Recall that

system (3) can be written in

$$\frac{dx}{dt} = Ax + \hat{f}_1(x, y), \quad \frac{dy}{dt} = \hat{f}_2(x, y),$$
 (14)

where $\hat{f}_1(0,y) \equiv 0$ and $\hat{f}_2(0,y) \equiv 0$.

• an admissible transformation is of the form $(x,y) \mapsto (x+h_1(x,y),y+h_2(x,y))$

with

$$\mathscr{A}: h_1(0,y) \equiv 0, \quad h_2(0,y) \equiv 0,$$
 (15)

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

which persists x = 0 as the center manifold.

Recall that

system (3) can be written in

$$\frac{dx}{dt} = Ax + \hat{f}_1(x, y), \quad \frac{dy}{dt} = \hat{f}_2(x, y),$$
 (14)

where $\hat{f}_1(0,y) \equiv 0$ and $\hat{f}_2(0,y) \equiv 0$.

• an admissible transformation is of the form $(x,y) \mapsto (x+h_1(x,y),y+h_2(x,y))$

with

$$\mathscr{A}: \quad h_1(0, y) \equiv 0, \quad h_2(0, y) \equiv 0, \tag{15}$$

|▲■ ▶ ▲ 臣 ▶ ▲ 臣 → ○ ○ ○

which persists x = 0 as the center manifold.

For F = Ax + f(x, y), and f and $g \in \mathscr{X}_{\rho}$,

 \blacklozenge consider the homological equation in h

$$Ad_F(h) = g, (16)$$

where

$$Ad_F(h) := \partial_x hF$$

Specially, when

• $Ad_Ah := \partial_x hAx$

• $A = \operatorname{diag}(\lambda)$ is in the diagonal form

then

$$h = Ad_A^{-1}g = \sum_{|j| \ge 1, l} \frac{g_{j,l}(y)}{j \cdot \lambda} x^j e_l.$$
(17)

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

For F = Ax + f(x, y), and f and $g \in \mathscr{X}_{\rho}$,

 \blacklozenge consider the homological equation in h

$$Ad_F(h) = g, (16)$$

where

$$Ad_F(h) := \partial_x hF$$

Specially, when

•
$$Ad_Ah := \partial_x hAx$$

• $A = \operatorname{diag}(\lambda)$ is in the diagonal form

then

$$h = Ad_A^{-1}g = \sum_{|j| \ge 1, l} \frac{g_{j,l}(y)}{j \cdot \lambda} x^j e_l.$$
(17)

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Preparation to proof of Theorem 1(a)

Lemma 5

Assume that $\text{Re}\lambda_j$'s of λ have the same sign, and

$$\hat{c}_2 \|f\|_{\tau,\rho} \rho^{-1} \le 1,$$
 (18)

then the equation

$$Ad_F(h) = \mathscr{P}_{\mu}g \tag{19}$$

has the unique solution $h = Ad_F^{-1} \circ \mathscr{P}_{\mu}g$ for any $g \in \mathscr{X}_{\rho}$, satisfying

$$\begin{split} \|h\|_{\tau,\rho} &\leq \hat{c}_1 \|g\|_{\tau,\rho} \text{ uniformly for } 0 \leq \mu \leq 1, \\ \text{where } \hat{c}_1 &= \hat{c}_2 = 4\kappa^{-1}, \text{ with } \kappa = \min_i\{|\text{Re}\lambda_i|\} > 0, \text{ and} \\ \mathscr{P}_{\mu} \text{ is the power shifted operator, given in (13)} \end{split}$$

Idea of the proof: Set

- $A = D + \varepsilon N$ with D diagonal, N nilpotent, $\varepsilon > 0$ small
- $f = B(y)x + \hat{f}$, with $B(y) = \partial_x f(0, y) \in \mathscr{G}_{\tau+1}(U_\rho)$ • $\hat{B} = \varepsilon N + B(y)$

Then

$$Ad_F = Ad_D + Ad_{\hat{B}} + Ad_{\hat{f}}$$

So equation (19) can be written in

 $(Ad_D + Ad_{\hat{B}})(h) = Ad_D(I + Ad_D^{-1} \circ Ad_{\hat{B}})h = \mathscr{P}_{\mu}g - Ad_{\hat{f}}(h).$

In case of invertibility of $I + Ad_D^{-1} \circ Ad_{\hat{B}}$, one further has

$$h = (I + Ad_D^{-1} \circ Ad_{\hat{B}})^{-1} (Ad_D^{-1} \circ \mathscr{P}_{\mu}g - Ad_D^{-1} \circ Ad_{\hat{f}}(h)).$$

∃) ∃

Next is to prove

- the operator $I + Ad_D^{-1} \circ Ad_{\hat{B}}$ is invertible
- estimate the norm of the inverse operator.

Taking the classical operator norm $|\cdot|_o$ on \mathscr{X}_ρ , i.e.

$$|f|_o = \sup_{\|g\|_{\tau,\rho}=1} \|f \cdot g\|_{\tau,\rho}.$$

Then

 $|Ad_D^{-1}|_o \leq \kappa^{-1},$

and for properly small $\varepsilon>0$ and $\rho>0$

 $|Ad_D^{-1} \circ Ad_{\hat{B}}|_o \le 1/2$

Hence $I + Ad_D^{-1} \circ Ad_{\hat{B}}$ is invertible and $|(I + Ad_D^{-1} \circ Ad_{\hat{B}})^{-1}|_o \le 2$ $||Ad_D^{-1} \circ Ad_{\hat{f}}(h)||_{\tau,\rho} \le ||h||_{\tau,\rho}/4$

for $4\|f\|_{\tau,\rho}\rho^{-1} \leq \kappa$. Hence

 $\|h\|_{\tau,\rho} \leq 2\kappa^{-1} \|g\|_{\tau,\rho} + \frac{1}{2} \|h\|_{\tau,\rho} \implies \|h\|_{\tau,\rho} \leq 4\kappa^{-1} \|g\|_{\tau,\rho}.$

This completes the proof by setting $\hat{c}_1 = \hat{c}_2 = 4\kappa^{-1}$,

Preparation to proof of Theorem 1(b)

Lemma 6

Assume that A = D is diagonal, $0 < \delta < 1$,

• the divisor
$$\Phi(t) = t^{\mu}$$
, $\mu > 0$,

• q is in (7) and q* is in (8).

If the norm $\|\cdot\|_{\tau,\rho}$ is associated with

 (b_1) $(x,y) \in \{0\} \times U_{\rho}, 2 \leq q < \infty$, and $\tau \geq (\mu + q)/(q - 1)$, or

 $(b_2) \ (x,y) \in \{0\} \times \{0\}, \, q^* < \infty, \, \text{and} \, \tau \ge (\mu+1)/(q^*-1),$

Eq (16) has the unique solution h satisfying

 $\|h\|_{\tau,\rho e^{-\delta}} \le \hat{c}_1 \delta^{-\mu} \|g\|_{\tau,\rho} \text{ for } \hat{c}_2 \|f\|_{\tau,\rho} \rho^{-1} \le 1,$

where $\hat{c}_1 > 0$, $\hat{c}_2 = 2ec^{-1}c_2$, *c* is from the small divisor condition (9), and c_2 is the *c* in Lemma 4.

Idea of the proof: Eq (16) is turned into

 $h = Ad_D^{-1}g - Ad_D^{-1} \circ Ad_fh.$

For (b_1) , by Lemma 4(iii), we get that

 $\|Ad_D^{-1} \circ Ad_f(h)\|_{\tau,\rho} \le c_1 \rho^{-1} \|f\|_{\tau,\rho} \|h\|_{\tau,\rho},$ (20)

for $\tau \ge (\mu + q)/(q - 1)$, and

$$\|Ad_D^{-1}g\|_{\tau,\rho e^{-\delta}} \leq c_3 \delta^{-\mu} \|g\|_{r,\rho}.$$

For (b_2) , similar estimates hold. So in both of the cases,

$$\|h\|_{\tau,\rho e^{-\delta}} \le c_3 \delta^{-\mu} \|g\|_{\tau,\rho} + \frac{1}{2} \|h\|_{\tau,\rho e^{-\delta}},$$

for $c_1 e \rho^{-1} \|f\|_{\tau,\rho} < 1/2$, which implies that

$$\|h\|_{\tau,\rho e^{-\delta}} \le \hat{c}_1 \delta^{-\mu} \|g\|_{\tau,\rho}, \text{ with } \hat{c}_1 = 2c^{-1} \mu^{\mu} e^{-\mu}$$

Proof of the main theorem

Main tool is the KAM methods to do cancellations

The admissible coordinates substitution

$$x \mapsto x, \quad y \mapsto y + h(x, y),$$
 (21)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

sends system (3) to

$$\frac{dx}{dt} = Ax + f_1(x, y+h), \quad \frac{dy}{dt} = g(x, y),$$
 (22)

where

$$g = -\partial_x h(Ax + f_1(x, y)) + f_2(x, y) + \mathscr{R},$$

and $\mathscr{R} = \mathscr{S}_1 + \mathscr{S}_2 + \mathscr{S}_3$ with

$$\begin{aligned} \mathscr{S}_1 &= f_2(x, y+h) - f_2(x, y), \\ \mathscr{S}_2 &= -\partial_x h(f_1(x, y+h) - f_1(x, y)), \\ \mathscr{S}_3 &= ((1+\partial_y h)^{-1} - 1)(\mathscr{S}_1 + \mathscr{S}_2) \end{aligned}$$

Proof of the main theorem

Main tool is the KAM methods to do cancellations The admissible coordinates substitution

$$x \mapsto x, \quad y \mapsto y + h(x, y),$$
 (21)

sends system (3) to

$$\frac{dx}{dt} = Ax + f_1(x, y+h), \quad \frac{dy}{dt} = g(x, y),$$
 (22)

where

$$g = -\partial_x h(Ax + f_1(x, y)) + f_2(x, y) + \mathscr{R},$$

and $\mathscr{R}=\mathscr{S}_1+\mathscr{S}_2+\mathscr{S}_3$ with

$$\begin{aligned} \mathscr{S}_{1} &= f_{2}(x, y + h) - f_{2}(x, y), \\ \mathscr{S}_{2} &= -\partial_{x}h(f_{1}(x, y + h) - f_{1}(x, y)), \\ \mathscr{S}_{3} &= ((1 + \partial_{y}h)^{-1} - 1)(\mathscr{S}_{1} + \mathscr{S}_{2}) \end{aligned}$$

By Lemmas 5 and 6, the equation

$$Ad_F(h) := \partial_x h(Ax + f_1(x, y)) = f_2(x, y)$$
 (23)

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

3

has a solution *h* satisfying the desired norm estimate.

Taking h as the solution of (23), and writing system (22) in

$$\frac{dx}{dt} = Ax + f_1(x, y) + f_1^+(x, y), \quad \frac{dy}{dt} = f_2^+(x, y), \quad (24)$$

where $f_1^+(x, y) = f_1(x, y+h) - f_1(x, y)$ and $f_2^+(x, y) = \mathscr{R}$.

By Lemmas 5 and 6, the equation

$$Ad_F(h) := \partial_x h(Ax + f_1(x, y)) = f_2(x, y)$$
 (23)

has a solution h satisfying the desired norm estimate.

Taking h as the solution of (23), and writing system (22) in

$$\frac{dx}{dt} = Ax + f_1(x, y) + f_1^+(x, y), \quad \frac{dy}{dt} = f_2^+(x, y),$$
(24)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

where $f_1^+(x,y) = f_1(x,y+h) - f_1(x,y)$ and $f_2^+(x,y) = \Re$.

Set $f = B(y)x + \hat{f}$, with

$$B(y) = \partial_x f(0, y) \in \mathscr{G}_{\tau+1}(U_{\rho}),$$

 \hat{f} the higher order terms in *x*.

Lemma 7

Assume that

• there exists $\rho_0 > 0$ such that $\|f\|_{\tau,\rho_0} < \infty$.

Then

 $\|B(y)x\|_{\tau,\rho} \leq \widetilde{c}_1 \rho^2$ and $\|\hat{f}\|_{\tau,\rho} \leq \widetilde{c}_1 \rho^2$ for $\rho \leq \rho_0/2$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

with $\tilde{c}_1 > 0$ to be determined.

Now comes the iterative lemma.

Lemma 8

By the conditions of Theorem 1, if $0 < \delta < 1, 0 < \rho < 1$, $\widetilde{c}_2 \|f_1\|_{\tau,\rho} \rho^{-1} \le 1$, $\|f_2\|_{\tau,\rho} \le \widetilde{c}_3 \rho \, \delta^{\mu+\tau+1}$, with $\widetilde{c}_2 = \widehat{c}_2, \, \widetilde{c}_3 = 1/((1+2c)\widehat{c}_1 e^2)$, then in system (24), $\|f_2^+\|_{r,\rho e^{-\delta}} \le K \rho^{-1} \delta^{-(\tau+2\mu+2)} \|f_2\|_{\tau,\rho}^2$, (25) $\|f_1^+\|_{r,\rho e^{-\delta}} \le K \delta^{-(\tau+\mu+1)} \|f_2\|_{\tau,\rho}$, (26)

Here

μ = 0, τ ≥ 0 is in Theorem 1(a);
μ ≥ 0, τ ≥ (μ+q)/(q-1) is in Theorem 1(b₁);

• $\mu \ge 0$, $\tau \ge (\mu + 1)/(q^* - 1)$ is in Theorem 1(b_2).

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Summarizing arguments above, we first prove the next one.

Theorem 2

By the conditions of Theorem 1, if

 $\|f\|_{\tau,\rho_0} < \infty$ in system (3) of form (14),

then there exits $\hat{\rho} > 0$ such that

the change of (23) satisfying $\|h\|_{\tau,\hat{\rho}} < \infty$

turns system (3) into (22) satisfying $\|g\|_{\tau,\hat{\rho}} = 0$

Here the norm $\|\cdot\|_{\tau,\rho}$ is for • $\mu = 0, \tau \ge 0$, and $(x,y) \in \{0\} \times U_{\rho}$ in Theorem 1(a); • $\mu \ge 0, \tau \ge \frac{\mu+q}{q-1}$ and $(x,y) \in \{0\} \times U_{\rho}$ in Theorem 1(b_1); • $\mu \ge 0, \tau \ge \frac{\mu+1}{q^*-1}$ and $(x,y) \in \{0\} \times \{0\}$ in Theorem 1(b_2).

・ロト ・ 理 ト ・ ヨ ト ・

3

Summarizing arguments above, we first prove the next one.

Theorem 2

By the conditions of Theorem 1, if

 $\|f\|_{\tau,\rho_0} < \infty$ in system (3) of form (14),

then there exits $\hat{\rho} > 0$ such that

the change of (23) satisfying $\|h\|_{\tau,\hat{\rho}} < \infty$

turns system (3) into (22) satisfying $||g||_{\tau,\hat{\rho}} = 0$

Here the norm $\|\cdot\|_{\tau,\rho}$ is for

- $\mu = 0$, $\tau \ge 0$, and $(x, y) \in \{0\} \times U_{\rho}$ in Theorem 1(a);
- $\mu \ge 0$, $\tau \ge \frac{\mu + q}{q 1}$ and $(x, y) \in \{0\} \times U_{\rho}$ in Theorem 1 (b_1) ;

•
$$\mu \ge 0, \ \tau \ge \frac{\mu + 1}{q^* - 1}$$
 and $(x, y) \in \{0\} \times \{0\}$ in Theorem 1 (b_2) .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Proof of Theorem 2

Here using the KAM methods, assume:

 $\|f\|_{\tau,\rho_0} = \varepsilon_0 \rho$ with $\varepsilon_0 > 0$ sufficiently small.

Set

$$\delta_0 < \frac{1}{2}, \ \ \rho_0 =
ho, \ \ \delta_n = \delta_0 2^{-n}, \ \ \text{and} \ \ \
ho_n =
ho_{n-1} e^{-\delta_{n-1}}.$$

By induction on the iteration, let

$$f^{(0)} = f = (f_1^{(0)}, f_2^{(0)}).$$

In the *n*th step, it begins at system (14) with

 $f^{(n-1)}$ in the norm $\|\cdot\|_{ au,
ho_{n-1}}$,

Solving the homological equation (23) gives

 $h = \hat{h}_n$ in the norm $\|\cdot\|_{\tau,\rho_n}$

which brings system (14) to system (24) with

 $f^+ = f^{(n)}$ in the norm $\|\cdot\|_{\tau,\rho_n}$,

Precisely, for the homological equation (23) in the different cases,

• its solution \hat{h}_n exists by

 \diamondsuit Lemma 5 as $ho=
ho_{n-1}$ and

 \diamondsuit Lemma 6 as $ho=
ho_{n-1}e^{-\delta_{n-1}/2}$ and $\delta=\delta_{n-1}/2$

with the common norm estimate

$$\|\hat{h}_n\|_{ au,
ho_n} \leq \hat{c}_1 \left(rac{\delta_{n-1}}{2}
ight)^{-\mu} \|f_2^{(n-1)}\|_{ au,
ho_{n-1}}.$$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

By the control (25) and (26) of Lemma 8, it follows

$$\|f_{2}^{(n)}\|_{\tau,\rho_{n}} \leq K\rho_{n-1}^{-1}\delta_{n-1}^{-\mu'}\|f_{2}^{(n-1)}\|_{\tau,\rho_{n-1}}^{2}$$

and

$$\|f_1^{(n)}\|_{\tau,\rho_n} \le K \delta_{n-1}^{-\mu'} \|f_2^{(n-1)}\|_{\tau,\rho_{n-1}}$$

as $\rho = \rho_{n-1}$ and $\delta = \delta_{n-1}$, where $\mu' = \tau + 2\mu + 2$.

By induction gives

$$\|f_{2}^{(n)}\|_{\tau,\rho_{n}} \leq (K\delta_{0}^{-\mu'}2^{\mu'}\varepsilon_{0})^{2^{n}}\rho,$$

$$\|f_{1}^{(n)}\|_{\tau,\rho_{n}} \leq (K\delta_{0}^{-\mu'}2^{\mu'}\varepsilon_{0})^{2^{n-1}}\rho.$$
(27)

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

By (27), one can get the norm estimate on g

By the control (25) and (26) of Lemma 8, it follows

$$\|f_{2}^{(n)}\|_{\tau,\rho_{n}} \leq K\rho_{n-1}^{-1}\delta_{n-1}^{-\mu'}\|f_{2}^{(n-1)}\|_{\tau,\rho_{n-1}}^{2}$$

and

$$\|f_1^{(n)}\|_{\tau,\rho_n} \le K \delta_{n-1}^{-\mu'} \|f_2^{(n-1)}\|_{\tau,\rho_{n-1}}$$

as $\rho = \rho_{n-1}$ and $\delta = \delta_{n-1}$, where $\mu' = \tau + 2\mu + 2$.

By induction gives

$$\|f_{2}^{(n)}\|_{\tau,\rho_{n}} \leq (K\delta_{0}^{-\mu'}2^{\mu'}\varepsilon_{0})^{2^{n}}\rho,$$

$$\|f_{1}^{(n)}\|_{\tau,\rho_{n}} \leq (K\delta_{0}^{-\mu'}2^{\mu'}\varepsilon_{0})^{2^{n-1}}\rho.$$
(27)

<□> < □> < □> < □> = - のへへ

& By (27), one can get the norm estimate on g

At last, set

$$h_n = \mathrm{Id} + \hat{h}_n, \qquad h^{(n)} = h_n \circ h_{n-1} \circ \cdots \circ h_1.$$

One has

$$h^{(n)} - h^{(n-1)} = \hat{h}_n \circ h^{(n-1)}.$$

And for all $n \in \mathbb{N}$, $h^{(n)}$'s are well defined, and

have a uniform bound norm

$$\|h^{(t)}\|_{\tau,\hat{\rho}} \leq \frac{(t+1)\hat{\rho}_2}{N+1} < \gamma\rho \quad \text{for all} \quad t \leq N$$
$$\|h^{(n)}\|_{\tau,\hat{\rho}} \leq \frac{2\gamma\rho}{3} \quad \text{for all} \quad n > N$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

with $\gamma = e^{-2\delta_0}$, $N \in \mathbb{N}$ such that $\sum_{n>N} 2^{-n} \leq \gamma/3$

and
$$\hat{\rho} = \min\left\{\frac{\gamma\rho}{3(d+2)}, \frac{r}{(N+1)(d+2)}\right\}, r \in (0, \gamma\rho/3]$$

Furthermore, since

• the sequence $\{h^{(n)}\}$ is fundamental, following

$$\|h^{(n)} - h^{(n-1)}\|_{\tau,\hat{\rho}} = \|\hat{h}_n \circ h^{(n-1)}\|_{\tau,\hat{\rho}} \le \frac{\rho}{2^n}, \quad n > N,$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

• the space $(\mathscr{X}, \|\cdot\|_{\tau,\hat{\rho}})$ is complete,

it follows that

- $\{h^{(n)}\}$ is convergent in $(\mathscr{X}, \|\cdot\|_{\tau,\hat{\rho}})$
- Its limit h satisfies the requirement of the theorem.

Theorem 2 is proved

Proof of Theorem 1

Since $f = (f_1, f_2)$ is of Gevrey-*s*, it follows

• $\|f\|_{\tau,\rho_0} < \infty$ with $\tau = s - 1$ for the $\rho_0 > 0$.

\bigstar Theorem 1(b_2): By Theorem 2 yields that

• the formal norm of g in system (22) vanishes.

So it admits a formal Gevrey- τ first integral, with

$$\tau = s^* \ge (\mu + 1)/(q^* - 1).$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

This confirms Theorem $1(b_2)$.

Proof of Theorem 1

Since $f = (f_1, f_2)$ is of Gevrey-*s*, it follows

•
$$||f||_{\tau,\rho_0} < \infty$$
 with $\tau = s - 1$ for the $\rho_0 > 0$.

\bigstar Theorem 1(b_2): By Theorem 2 yields that

• the formal norm of g in system (22) vanishes.

So it admits a formal Gevrey- τ first integral, with

$$\tau = s^* \ge (\mu + 1)/(q^* - 1).$$

▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ の Q @

This confirms Theorem $1(b_2)$.

Now, take

- $\mu = 0$ and $\tau \ge 0$ in Theorem 1(*a*),
- $\mu \ge 0$ and $\tau \ge (\mu + q)/(q 1)$ in Theorem 1(b_1).

with the norm $\|\cdot\|_{\tau,\rho}$ about $(x,y) \in \{0\} \times U_{\rho}$.

By Theorem 2, one can find the change h in (21)

• turning the original system into (22) with $||g||_{\tau,\hat{\rho}} = 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Using the Borel type lemma for the Gevrey functions,

• $\exists \widetilde{h}(x,y)$ of Gevrey- $(\tau+1)$ satisfying $\operatorname{Jet}_{x=0}^{\infty}(\widetilde{h}-h)=0$

which replaces h in (21), and sends system (3) to

$$\frac{dx}{dt} = Ax + f_1(x, y + \widetilde{h}), \quad \frac{dy}{dt} = \widetilde{g}(x, y),$$
(28)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

where $\operatorname{Jet}_{x=0}^{\infty} \widetilde{g} = 0$.

Finally, we prove that system (28) is

• Gevrey- $(\tau + 1)$ conjugated to the one with $\tilde{g}(x, y) = 0$

via Theorem K below.

Using the Borel type lemma for the Gevrey functions,

• $\exists \widetilde{h}(x,y)$ of Gevrey- $(\tau+1)$ satisfying $\operatorname{Jet}_{x=0}^{\infty}(\widetilde{h}-h)=0$

which replaces h in (21), and sends system (3) to

$$\frac{dx}{dt} = Ax + f_1(x, y + \widetilde{h}), \quad \frac{dy}{dt} = \widetilde{g}(x, y),$$
(28)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

where $\operatorname{Jet}_{x=0}^{\infty} \widetilde{g} = 0$.

Finally, we prove that system (28) is

• Gevrey- $(\tau + 1)$ conjugated to the one with $\tilde{g}(x, y) = 0$ via Theorem K below.

Theorem K

For the system

$$\frac{dx}{dt} = Ax + f_1(x, y) + r_1(x, y), \quad \frac{dy}{dt} = By + f_2(x, y) + r_2(x, y), \quad (29)$$

with A hyperbolic and B center, assume that

•
$$f, r = O(||x||^2 + ||y||^2)$$
 as $(x, y) \to (0, 0)$,

• $f_1(0,y) \equiv 0$ for all y (local center manifold is strengthened)

•
$$\operatorname{Jet}_{(0,y)}^{\infty} r = 0$$
 for all y.

If f and r are both of Gevrey- α , then

• a Gevrey- α coordinates substitution annihilates *r*.

Its proof can be done by Belitskii and Kopanskii [JDDE, 2002], Stolovitch [Ann. Inst. Fourier 2013], Z. [JDE 2021], ABARE A

Xiang ZHANG: Shanghai Jiao Tong University Local Gevrey integrability

Theorem K

For the system

$$\frac{dx}{dt} = Ax + f_1(x, y) + r_1(x, y), \quad \frac{dy}{dt} = By + f_2(x, y) + r_2(x, y), \quad (29)$$

with A hyperbolic and B center, assume that

•
$$f, r = O(||x||^2 + ||y||^2)$$
 as $(x, y) \to (0, 0)$,

• $f_1(0,y) \equiv 0$ for all y (local center manifold is strengthened)

•
$$\operatorname{Jet}_{(0,y)}^{\infty} r = 0$$
 for all y.

If f and r are both of Gevrey- α , then

• a Gevrey- α coordinates substitution annihilates *r*.

Its proof can be done by Belitskii and Kopanskii [JDDE, 2002], Stolovitch [Ann. Inst. Fourier 2013], Z. [JDE 2021]

By Theorem K

• the original system is Gevrey- $(\tau + 1)$ conjugated to

$$\frac{dx}{dt} = Ax + \hat{f}_1(x, y), \quad \frac{dy}{dt} = 0.$$

So

• the original system has a Gevrey-s* first integral

Recall that $\tau = s^*$. Theorem 1 is proved.

谢 谢!

Thanks for your attention!

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Xiang ZHANG: Shanghai Jiao Tong University Local Gevrey integrability