Ejection/Collision Orbits in the RTBP: why, what and how

Mercè Ollé

Universitat Politècnica de Catalunya, CRM & IMTech, Barcelona, Spain Joint work with T. M-Seara, O. Rodríguez and J. Soler

Online Seminar GSDUAB, 19 December 2022

Outline

- Binary collisions.
 - Celestial mechanics: the RTBP (planar and 3d cases). O. Rodríguez's PhD Thesis.
 - Key ingredients: regularization, collision manifold, ejection-collision orbits (*n*-EC orbits)
 - How do ejection orbits interact with "other"? Equilibrium points, periodic orbits, stable/unstable manifolds, invariant tori
 - Atomic chemistry: the hydrogen atom in a circularly polarized microwave field. The CP problem. Ionization. Joint work with E. Barrabés and O. Rodríguez.
- Multiple collisions.
 - Celestial mechanics: some N-body problems.
 - Joint work with M. Álvarez-Ramírez, E. Barrabés and M. Medina.

Why do we study ejection/collision orbits?

- They are a kind of solutions of a system of ODE
- ODE with singularities, they require regularization
- The ejection orbits may be regarded as some kind of skeleton of close by orbits
- The EC orbits are actually the termination of continuation of families of periodic orbits
- Ballistic transport (zero energy transfer) using the natural dynamics of the system.

Part I

The planar RTBP

The PRTBP

RTBP

The restricted three-body problem (RTBP) consists in the description of the motion of an infinitesimal body P under the attraction of two bodies $(P_1 \text{ and } P_2)$ called primaries.

Circular RTBP. Synodic coordinate system

The primaries P_1 and P_2 have masses $1 - \mu$ and μ , $\mu \in (0, 1)$, their positions are fixed at $(\mu, 0)$ and $(\mu - 1, 0)$, respectively, and the period of their motion is 2π .

The PRTBP

RTBP

The restricted three-body problem (RTBP) consists in the description of the motion of an infinitesimal body P under the attraction of two bodies $(P_1 \text{ and } P_2)$ called primaries.

Circular RTBP. Synodic coordinate system

The primaries P_1 and P_2 have masses $1 - \mu$ and μ , $\mu \in (0,1)$, their positions are fixed at $(\mu, 0)$ and $(\mu - 1, 0)$, respectively, and the period of their motion is 2π .

The RTBP

Equation of motion

The motion of the third body is given by

$$\begin{aligned} \ddot{x} - 2\dot{y} &= D_x \Omega(x, y) \\ \ddot{y} + 2\dot{x} &= D_y \Omega(x, y), \end{aligned} \tag{1}$$

where

$$\Omega(x,y) = \frac{1}{2}(x^2 + y^2) + \frac{1 - \mu}{\sqrt{(x - \mu)^2 + y^2}} + \frac{\mu}{\sqrt{(x - \mu + 1)^2 + y^2}} + \frac{1}{2}\mu(1 - \mu).$$

Position Primaries

The equation of motion is not well defined in the position of the primaries.

The RTBP

Equation of motion

The motion of the third body is given by

$$\begin{aligned} \ddot{x} - 2\dot{y} &= D_x \Omega(x, y) \\ \ddot{y} + 2\dot{x} &= D_y \Omega(x, y), \end{aligned} \tag{1}$$

where

$$\Omega(x,y) = \frac{1}{2}(x^2 + y^2) + \frac{1 - \mu}{\sqrt{(x - \mu)^2 + y^2}} + \frac{\mu}{\sqrt{(x - \mu + 1)^2 + y^2}} + \frac{1}{2}\mu(1 - \mu).$$

Position Primaries

Mer

The equation of motion is not well defined in the position of the primaries.

|--|

ECO 6/60

Jacobi Integral & symmetry

Jacobi Integral

$$C = 2\Omega(x, y) - \dot{x}^2 - \dot{y}^2.$$
 (2)

emma

The equation satisfy the symmetry

$$(t, x, y, x', y') \longrightarrow (-t, x, -y, -x', y').$$

Jacobi Integral & symmetry

Jacobi Integral

$$C = 2\Omega(x, y) - \dot{x}^2 - \dot{y}^2.$$
 (2)

Lemma

The equation satisfy the symmetry

$$(t, x, y, x', y') \longrightarrow (-t, x, -y, -x', y').$$
(3)

Equilibrium points

Five eq. points

- Triangular points: $L_{4,5} = (\mu \frac{1}{2}, \pm \frac{\sqrt{3}}{2})$
- Collinear points: L_1 , L_2 i L_3 s.t. $x_{L_2} \le \mu 1 \le x_{L_1} \le \mu \le x_{L_3}$

Hill's region

Hill's region:

From the Jacobi Integral ${\cal C}$ we can define the associated Hill's region as

$$\mathcal{R}(C) = \{ (x, y) \in \mathbb{R}^2 \mid 2\Omega(x, y) \ge C \}.$$

n-Ejection collision orbits (ECO)

Definition

EC orbit such that ejects from the primary P_1 , reaches n times a relative maximum in the distance with respect to P_1 and finally collides with it.

Examples: 1, 2 and 3 ECO

1st necessary step: regularization

McGehee's regularization

Idea:

- Polar change of coordinates with origin at the position of the primary that we want to regularize. $(P_1 = (0,0) \text{ and } P_2 = (1,0))$
- New variables: $v = \dot{r}r^{1/2}$ $u = r^{3/2}\dot{\theta}$

• Change of time:
$$dt/d au=r^{3/2}$$

Equation of motion:

$$\begin{aligned} r' &= vr \\ \theta' &= u \\ v' &= \frac{1}{2}v^2 + u^2 + 2ur^{3/2} + r^3 - (1-\mu) - \mu r^2 \left(\cos\theta + \frac{r - \cos\theta}{(1+r^2 - 2r\cos\theta)^{3/2}}\right) \\ u' &= -\frac{1}{2}uv - 2vr^{3/2} + \mu r^2 \sin\theta \left(1 - \frac{1}{(1+r^2 - 2r\cos\theta)^{3/2}}\right), \end{aligned}$$

McGehee's regularization

Idea:

- Polar change of coordinates with origin at the position of the primary that we want to regularize. $(P_1 = (0,0) \text{ and } P_2 = (1,0))$
- New variables: $v = \dot{r}r^{1/2}$ $u = r^{3/2}\dot{\theta}$

• Change of time:
$$dt/d au=r^{3/2}$$

Equation of motion:

$$\begin{aligned} r' &= vr \\ \theta' &= u \\ v' &= \frac{1}{2}v^2 + u^2 + 2ur^{3/2} + r^3 - (1-\mu) - \mu r^2 \left(\cos\theta + \frac{r - \cos\theta}{(1+r^2 - 2r\cos\theta)^{3/2}}\right) \\ u' &= -\frac{1}{2}uv - 2vr^{3/2} + \mu r^2 \sin\theta \left(1 - \frac{1}{(1+r^2 - 2r\cos\theta)^{3/2}}\right), \end{aligned}$$

McGehee's regularization

Collision Manifold

$$\Lambda = \{r = 0, v^2 + u^2 = 2(1 - \mu)\}$$

An ejection orbit: an angle θ_0

•
$$S^+ = \{(r = 0, \theta, v = v_0, u = 0)\}$$

• $S^- = \{(r = 0, \theta, v = -v_0, u = 0)\}$
with $v_0 = \sqrt{2(1 - \mu)}$
• $\forall p^+ \in S^+$:
• $\dim(W^u(p^+)) = 2$
• $\dim(W^s(p^+)) = 1$
• $\forall p^- \in S^-$:
• $\dim(W^u(p^-)) = 1$
• $\dim(W^s(p^-)) = 2$

Levi-Civita's regularization

Idea:

• New variables u and v s.t.:

$$\begin{cases} x - x_0 = u^2 - v^2 \\ y = 2uv \end{cases}$$

where x_0 is the *x*-coordinate of the position of the primary that we want to regularize.

• Change of time: $dt/ds = 4(u^2 + v^2)$

Levi-Civita's regularization

Equation of motion:

$$\begin{cases} u'' - 8(u^2 + v^2)v' = \left(4U(u^2 + v^2)\right)_u \\ v'' + 8(u^2 + v^2)u' = \left(4U(u^2 + v^2)\right)_v \end{cases}$$

where $^{\prime}=d/ds$ and

$$U = \frac{1}{2} \left[(1-\mu) \left(u^2 + v^2 \right)^2 + \mu r_1^2 \right] + \frac{1-\mu}{u^2 + v^2} + \frac{\mu}{r_2} - \frac{C}{2},$$

with $r_2 = \sqrt{(1 + u^2 - v^2)^2 + 4u^2v^2}$.

McGehee's regularization vs Levi-Civita's regularization

McGehee's regularization	Levi-Civita's regularization
"easy" equations	"difficult" equations
Collision Manifold	-
Collision/ejection in infinite time	Collision/ejection in finite time

From now on: Levi-Civita regularization

Fix μ and CInitial condition of an ejection orbit given by θ_0 ($\theta_0 \in [0, 2\pi)$ in original coord. or $\theta_0 \in [0, \pi)$ in Levi Civita coord.)

Analytical results for n-EC orbits

The RTBP

Some considerations:

• Hill region, Value of C such that

$$\{C \mid C \ge C_{L_1}(\mu)\}.$$

• We just need to regularize the position of the first primary.

n-EC orbits

Previous results: n = 1 [Llibre 1982, Lacomba and Llibre 1988, Chenciner and Llibre 1988]

Given a value of the mass parameter $\mu \in (0,1)$ there exists a $\hat{C}(\mu)$ big enough such that for all values of the Jacobi constant $C \geq \hat{C}(\mu)$ the are exactly four 1-EC orbits.

The RTBP

Theorem 1 (2021)

For all $n \in \mathbb{N}$, there exists a $\hat{K}(n)$ such that for $K \ge \hat{K}(n)$ and for any value of $\mu \in (0, 1)$ and $C = 3\mu + K(1 - \mu)^{2/3}$, there exist exactly four *n*-EC orbits, which can be characterized by:

- Two *n*-EC orbits both symmetric with respect to the *x* axis.
- Two *n*-EC orbits symmetric to each other with respect to the *x* axis.

Theorem 2 (2021)

There exists an \hat{L} such that for $L \geq \hat{L}$ and for any value of $\mu \in (0, 1)$, $n \in \mathbb{N}$ and $C = 3\mu + Ln^{2/3}(1-\mu)^{2/3}$, there exist exactly four *n*-EC orbits, with the same characterization.

Idea of the proof: characterization of an *n*-ECO: at the *n*-th minimum distance (with the primary) the angular momentum is equal to zero: M = uv' - vu' = 0. So

 $M(\theta_0) = 0$

- + a perturbative approach
- + the implicit function theorem

In order to compute the number of n-EC orbits we need to obtain the 0's of the angular momentum at the n-th minimum distance (with respect to the primary) of the ejection orbits.

Numerical results

1-EC orbits

Trajectories of the four 1-EC orbits for $\mu=0.1,\,0.5$ and C=5.

n-EC orbits

Numerically we have computed: For all $\mu \in (0,1)$ and n from 1 to 100, $C \ge \hat{C}(\mu, n)$ there exist exactly four n-EC orbits,

Trajectories of the four $n\text{-}\mathsf{EC}$ orbits for $\mu=0.2$ and C=10 for $n=2,\,4,\,8.$

The RTBP

Computation 1-EC orbits, 2-EC orbits, varying $C~(\mu=0.1)$

The RTBP

n-EC orbits

Continuation of families γ_n , δ_n , α_n and β_n of *n*-EC orbits for n = 1, 2, 5 (blue, green and purple colors respectively) in θ_0 and $C \in [5.5, 20]$ when varying $\mu \in (0, 1)$.

 $\ensuremath{\mathsf{QUESTION}}\xspace$ what happens if we decrease the Jacobi constant value?

- $C_{L_1} \leq C$, bifurcations
- $C_{L_2} \leq C \leq C_{L_1}$

The RTBP

Still $C_{L_1} \leq C$

n-EC orbits ($\mu = 0.1$), still $C_{L_1} \leq C$

n = 1, 2

n-EC orbits $(\mu = 0.1)$, still $C_{L_1} \leq C$. Bifurcations

n = 3, 4

n-EC orbits ($\mu = 0.1$), still $C_{L_1} \leq C$. Bifurcations

n = 5, 6

The RTBP

n-EC orbits $(\mu = 0.1)$, still $C_{L_1} \leq C$. Bifurcations

Bifurcation of n-EC orbits

Bifurcation of *n*-EC orbits ($\mu = 0.1, n = 2$)

Zeros of the angular momentum

Bifurcation of *n*-EC orbits ($\mu = 0.1, n = 3$)

Zeros of the angular momentum

-So far
$$C_{L_1} \leq C$$

-Now
$$C_{L_2} \leq C \leq C_{L_1}$$

Now $C_{L_2} \leq C \leq C_{L_1}$

- Interaction between ejection orbits and other?
- Other (not so simple) EC orbits?

The RTBP

Motivation: other 1-EC orbits for $\mu = 0.5$ and $C = \overline{C_{L_2}(\mu)}$

Transit regions and ejection/collision orbits

Transit regions and ejection/collision orbits

Goals:

- Evolution of ejection orbits along time.
- Role of other invariant objects, in particular: LPO₁.
- Study the EC orbits for $C \in [C_{L_{2,3}}, C_{L_1})$.

Transit regions

Question: How do we find "big" transit regions?

• Through the heteroclinic connections between a primary and the LPO_1 , $E - O_1$.

The RTBP

Transit regions

The RTBP

Transit regions

Is the determination of such transition intervals this simple? No!!!

Transit regions

How many heteroclinic E-O₁ do exist? Infinitely many!!!

How many heteroclinic E-O₁ do exist? Infinitely many!!!

How many heteroclinic $E-O_1$ do exist? Infinitely many!!! Why? Crucial: existence of homoclinic orbits to the LPO_1 .

Let us play with two homoclinic Connections of the $LPO_{1}...$

The RTBP

...infinitely many Heteroclinic Connections $E - O_1$

So, chaotic classification!!!

There are infinitely many homoclinic orbits to $LPO_1!!!$ So, crazy chaotic classification!!!

...infinitely many EC orbits to P_1

...infinitely many EC orbits to P_1

Orbits from P_1 to P_2

References

- J. Llibre, Cel. Mech, Dyn. Astron., 28(83), 83-105, 1982
- E. A. Lacomba, J. Llibre, J. Diff. Eqs., 74, 69-85, 1988
- E. A. Chenciner, J. Llibre, Ergodic Th. Dyn. Sys., 8, 63-72, 1988
- M. O., O. Rodriguez, J. Soler, CNSNS, 55, 298-315, 2018
- M. O., O. Rodriguez, J. Soler, CNSNS, 90(105294), 1–27, 2020
- M. O., O. Rodriguez, J. Soler, CNSNS, 94:105550,29, 1–37, 2021
- T. M-Seara, M. O., O. Rodriguez, J. Soler, J. Nonlinear Sci, 33:17, 1–53, 2022

Future work

• Smaller values of C. Connections ejection-infinity?

- The spatial 3D case.
 - J. Llibre, J. Martinez Alfaro, Cel. Mech, Dyn. Astron., 35, 113–128, 1985
 - M. O., O. Rodriguez, J. Soler, CNSNS, 106410, 1–21, 2022. 3D case and n = 1
 - n-EC orbits, $n \ge 1$. Analytically and numerically.
- The elliptic RTBP.

Thank you very much for your attention!!!!