# Discrete dynamic models in social sciences: strategic interaction, rationality, evolution 

Gian Italo Bischi<br>Università di Urbino

email: gian.bischi@uniurb.it<br>URL: www.mdef.it/gian-italo-bischi/

International Online GSDUAB Seminar

November 14, 2022

## Time in economics is often discrete, event driven dynamics

## Two famous exemplary cases

- Cobweb model for price dynamics (Nicholas Kaldor, 1934)
- Duopoly model (Augustine Cournot, 1838)


## OUTLINE OF THE LECTURE

- Cobweb with fading memory and maps with vanishing denominator


## Time in economics is often discrete, event driven dynamics

## Two famous exemplary cases

- Cobweb model for price dynamics (Nicholas Kaldor, 1934)
- Duopoly model (Augustine Cournot, 1838)


## OUTLINE OF THE LECTURE

- Cobweb with fading memory and maps with vanishing denominator
- Duopolies with different boudedly rational strategies and adaptive dynamics leading to two kinds of complexity


## Time in economics is often discrete, event driven dynamics

## Two famous exemplary cases

- Cobweb model for price dynamics (Nicholas Kaldor, 1934)
- Duopoly model (Augustine Cournot, 1838)


## OUTLINE OF THE LECTURE

- Cobweb with fading memory and maps with vanishing denominator
- Duopolies with different boudedly rational strategies and adaptive dynamics leading to two kinds of complexity
- Duopoly with identical firms and riddling phenomena


## Time in economics is often discrete, event driven dynamics

## Two famous exemplary cases

- Cobweb model for price dynamics (Nicholas Kaldor, 1934)
- Duopoly model (Augustine Cournot, 1838)


## OUTLINE OF THE LECTURE

- Cobweb with fading memory and maps with vanishing denominator
- Duopolies with different boudedly rational strategies and adaptive dynamics leading to two kinds of complexity
- Duopoly with identical firms and riddling phenomena
- Evolutionary competition between different behavioural rules and replicator dynamics


## Time in economics is often discrete, event driven dynamics

## Two famous exemplary cases

- Cobweb model for price dynamics (Nicholas Kaldor, 1934)
- Duopoly model (Augustine Cournot, 1838)


## OUTLINE OF THE LECTURE

- Cobweb with fading memory and maps with vanishing denominator
- Duopolies with different boudedly rational strategies and adaptive dynamics leading to two kinds of complexity
- Duopoly with identical firms and riddling phenomena
- Evolutionary competition between different behavioural rules and replicator dynamics
- Some future extensions


## Cobweb model

Consider a good sold in the market at a unit price $p(t)$.

- Demand: $Q^{d}(t)=D\left(p_{t}\right)$, usually decreasing (hence invertible).
- Supply function $Q^{s}(t)=S\left(p_{t}^{e}\right)$ (increasing)
- Economic equilibrium: $Q^{d}(t)=Q^{s}(t) \Longrightarrow D\left(p_{t}\right)=S\left(p_{t}^{e}\right)$


## discrete dynamics

$\Delta t=1$ : production lag (maturation period for agricultural products, production time for an industrial process)
Naïve expectations $p_{t}^{e}=p_{t-1}$
Matching between demand and supply: $D\left(p_{t}\right)=S\left(p_{t-1}\right)$
Hence $\quad p_{t+1}=f\left(p_{t}\right)=D^{-1}\left(S\left(p_{t}\right)\right)$
Example: linear demand and linear supply:

$$
D(p)=a-b p ; S(p)=-c+d p
$$

$$
p_{t+1}=f\left(p_{t}\right)=-\frac{d}{b} p_{t}+\frac{a+c}{b}
$$



## Nonlinear supply with saturation

$S(p)=\arctan (\lambda(p-1))$


$$
\begin{aligned}
& D\left(p_{t+1}\right)=S\left(p_{t}\right) \text { gives: } \\
& p_{t+1}=f\left(p_{t}\right)=\frac{1}{b}\left[a-\arctan \left(\lambda\left(p_{t}-1\right)\right]\right.
\end{aligned}
$$ nonlinear decreasing map.



- Chiarella C. (1988) "The cobweb model. Its instability and the onset of chaos", Economic Modelling.

Hommes C. (1991) "Adaptive learning and roads to chaos. The case of the cobweb", Economic Letters.

## Adaptive expectations

$p_{t+1}^{e}=p_{t}^{e}+\alpha\left(p_{t}-p_{t}^{e}\right)=(1-\alpha) p_{t}^{e}+\alpha p_{t}$, $0 \leq \alpha \leq 1$.
For $\alpha=1$ reduces to naïve $p_{t+1}^{e}=p_{t}$.
From $p_{t}=f\left(p_{t}^{e}\right)$ the law of motion

$$
p_{t+1}^{e}=(1-\alpha) p_{t}^{e}+\alpha f\left(p_{t}^{e}\right)
$$

in the space of expected prices.
Then $p_{t}=f\left(p_{t}^{e}\right)$ from beliefs to realizations
For the model
$p_{t}=f\left(p_{t}^{e}\right)=\frac{1}{b}\left[a-\arctan \left(\lambda\left(p_{t}^{e}-1\right)\right]\right.$
we get a bimodal map.


## Statistical learning

目 Dimitri (1988), "A short remark on learning of Rational Expectations", Economic Notes.
Holmes, Manning (1988) "Memory and market stability: The case of the Cobweb", Economic Letters
Cobweb model $p_{t+1}=f\left(p_{t+1}^{(e)}\right)$
with $p_{t+1}^{(e)}$ average of past prices

$$
p_{t+1}^{(e)}=\sum_{k=1}^{t} a_{t k} p_{k}, \text { with } a_{t k} \geq 0, \text { and } \sum_{k=1}^{t} a_{t k}=1
$$

numerically show that "the evolution of the model is very much dependent upon the starting position" and "intermediate run dynamics can be rather complex and of considerable interest".

## Fading memory

Bischi and Gardini (1997) Int. Jou. of Bifurcation and Chaos.
Bischi and Naimzada (1997) Economic notes, 1997
Weights distributed as the terms of a geometric sequence of ratio $\rho \in[0,1]$

$$
a_{t k}=\frac{\rho^{t-k}}{W_{t}}, \quad \text { with } \quad W_{t}=\sum_{k=1}^{t} \rho^{t-k}= \begin{cases}\frac{1-\rho^{t}}{1-\rho} & \text { if } 0 \leq \rho<1 \\ t & \text { if } \rho=1\end{cases}
$$

Taking $z_{t}=p_{t+1}^{(e)}=\sum_{k=1}^{t} \frac{\rho^{t-k}}{W_{t}} p_{k}$ and $W_{t}$ (partial sum of geometric series) as dynamical variables

$$
T:\left\{\begin{array}{l}
z_{t+1}=\frac{\rho W_{t}}{1+\rho W_{t}} z_{t}+\frac{1}{1+\rho W_{t}} f\left(z_{t}\right) \\
W_{t+1}=1+\rho W_{t}
\end{array}\right.
$$

2-dim equivalent map, with i.c. $\left(z_{1}, W_{1}\right)=\left(p_{1}, 1\right)$ and attractors in the limiting invariant line $W=W^{*}=\frac{1}{1-\rho}$

Quadratic map $f(z)=\mu z(1-z)$ (like in the example of Dimitri)


The two preimages of the line $W=0$ are the points $Q_{1}=\left(0,-\frac{1}{\rho}\right)$ and $Q_{2}=\left(\frac{\mu-1}{\mu},-\frac{1}{\rho}\right)$ where the first component of the map assumes the form $\frac{0}{0}$.


## Maps with vanishing denominator and focal points

嗇 Bischi，L．Gardini（1997）＂Basin fractalization due to focal points in a class of triangular maps＂，Int．Jou．of Bifurcation and Chaos．
國 Bischi，Gardini，Mira（1999）＂Maps with denominator．Part I：some generic properties＂，Int．Jou．of Bifurcation \＆Chaos．

围 Bischi，Gardini，Mira．（2003）＂Plane maps with denominator．Part II： noninvertible maps with simple focal points＂，Int．Jou．of Bifurcation and Chaos．
Bischi，Gardini，Mira（2005）＂Plane Maps with Denominator．Part III： Non simple focal points and related bifurcations＂，Int．Jou．of Bifurcation and Chaos．
$T:\left\{\begin{array}{l}x^{\prime}=F(x, y) \\ y^{\prime}=G(x, y)\end{array}\right.$ where $\quad F(x, y)=\frac{N_{1}(x, y)}{D_{1}(x, y)}$ and/or $G(x, y)=\frac{N_{2}(x, y)}{D_{2}(x, y)}$

## Definitions

In $\delta_{s}$ (Singular set) one denominator vanishes. $Q \in \delta_{s}$ focal point if at least one component of the map $T$ becomes $0 / 0$ in $Q$ and there exist smooth arcs $\gamma(t)$, with $\gamma(0)=Q$, such that $\lim _{\tau \rightarrow 0} T(\gamma(\tau))$ is finite. The set of all such finite values is the prefocal set $\delta_{Q}$

One-to-one correspondence between slope of $\gamma$ through $Q_{i}$ and point where $T(\gamma)$ crosses $\delta_{Q}$


Roughly speaking, a prefocal curve is a set of points for which at least one inverse exists which maps (or "focalizes") the whole set into a focal point.


## Sequence of bifurcations

As $\mu$ is increased, at $\mu_{0}^{*}=2+2 \sqrt{1+\rho}$ the vertex $H$ of the parabola $\omega_{-2}$ is on the line $W=W_{1}=1+\rho$ and, as a consequence, the curve $\omega_{-2}$ becomes tangent to the line of initial conditions $W=W_{0}=1$

At $\mu=\mu_{1}^{*} H$ is on
$W=W_{2}=1+\rho+\rho^{2}$. At this value of $\mu$ two lobes of $\mathcal{B}(\infty)$, bounded by $\omega_{-3}$, reach the line of initial conditions and two new holes are created

When $\mu=\mu_{\infty}^{*}=\lim _{n \rightarrow \infty} \mu_{n}^{*}=\frac{4-\rho}{1-\rho}$ the vertex $H$, together with all of its infinite preimages on the top of the lobes, reach the line of the $\omega$-limit sets $W=W^{*}$. The basin along $W=1$ is a Cantor set.


回 Bray, M. (1983) "Convergence to rational expectations equilibrium" in Friedman and Phelps (eds), Individual forecasting and aggregate outcomes, Cambridge University Press.

Uniform average, limiting case $\rho=1, W^{*}=\frac{1}{1-\rho} \rightarrow \infty$


## Classical Cournot Oligopoly Model with rational players

Market with $N$ firms $i=1, \ldots, N$
Intersection $q_{i}=R_{i}\left(q_{-i}\right)$ (Cournot-Nash equilibrium) computed and reached in one shot
Cost functions $C_{i}\left(q_{i}\right), i=1, \ldots, N$
Max. expected profit $\pi_{i}=p q_{i}-C_{i}\left(q_{i}\right)$ :
$q_{i}(t+1)=\arg \max _{q_{i}}\left[f_{i}^{e}\left(q_{i}+q_{-i}^{e}(t+1)\right) q_{i}-C_{i}\left(q_{i}\right)\right]$.

## Rationality, info set, computational ability

- Demand function $f_{i}^{e}=f(Q), \forall i$;
- Its own cost function $C_{i}\left(q_{i}\right)$
- Able to solve the max. problem
- Perfect Foresight

$$
q_{-i}^{e}(t+1)=q_{-i}(t+1)
$$

## Dynamic Cournot linear model (1838)

## BR: Best Reply dynamics (with naive expectations)

$q_{i}(t+1)=R_{i}\left(q_{-i}^{e}(t+1)\right) \quad$ with $q_{-i}^{e}(t+1)=q_{-i}(t)$ discrete dynamical system: $\quad q_{i}(t+1)=R_{i}\left(q_{-i}(t)\right)$

Linear demand $p(t)=a-b Q$, linear costs

- $\pi_{i}(t)=\left(a-b\left(q_{1}+q_{2}\right)\right) q_{i}(t)-c_{i} q_{i}$
- FOC: $a-2 b q_{i}-b q_{j}-c_{i}=0$
- reaction functions with naive expectations:

$$
\begin{aligned}
& q_{1}(t+1)=R_{1}\left(q_{2}(t)\right)=-\frac{1}{2} q_{2}(t)+\frac{a-c_{1}}{2 b} \\
& q_{2}(t+1)=R_{2}\left(q_{1}(t)\right)=-\frac{1}{2} q_{1}(t)+\frac{a-c_{2}}{2 b}
\end{aligned}
$$



Unique NE, always stable

## Cournot tâtonnement towards Cournot-Nash Equilibrium



## Introducing nonlinearities

"Models of duopoly have always held a fascination for mathematically inclined economists"

Shubik, 1981, in Handbook of Mathematical Economics
"... and also for economically inclined mathematicians"
see e.g. Bischi, Chiarella, Kopel, Szidarovszky Nonlinear oligopolies:
Stability and Bifurcations, Springer 2010

## Unimodal reaction functions

R Rand, D. (1978) "Exotic Phenomena in games and duopoly models", Journal of Mathematical Economics.
Chaotic dynamics, i.e. bounded oscillations with sensitive dependence on initial conditions


## Economically funded unimodal reaction functions

Isoelastic demand $p=\frac{1}{Q}$ (Puu, CS\&F 1991)

- $\pi_{i}(t)=\frac{q_{i}}{q_{1}+q_{2}}-c_{i} q_{i}$
- FOC: $\frac{q_{j}}{\left(q_{1}+q_{2}\right)^{2}}-c_{i}=0$
- Reaction functions
$q_{1}=R_{1}\left(q_{2}\right)=\sqrt{q_{2} / c_{1}}-q_{2}$

$q_{2}=R_{1}\left(q_{2}\right)=\sqrt{q_{1} / c_{2}}-q_{1}$
Nonlinear cost (Kopel, CS\&F 1996)
- Linear demand: $\quad p=a-b\left(q_{1}+q_{2}\right)$
- Cost functions with externalities
$C_{i}=d+a q_{i}-b(1+2 \mu) q_{i} q_{j}+2 b \mu q_{i} q_{j}^{2}$
Reaction functions: $q_{i}=R_{i}\left(q_{j}\right)=\mu_{i} q_{j}\left(1-q_{j}\right)$


## Best reply with naive expectations

國 Puu, T. 1991. "Chaos in Duopoly pricing", Chaos, Solitons \& Fractals

$$
\left\{\begin{array}{l}
q_{1}(t+1)=R_{1}\left(q_{2}(t)\right)=\sqrt{q_{2}(t) / c_{1}}-q_{2}(t) \\
q_{2}(t+1)=R_{2}\left(q_{1}(t)\right)=\sqrt{q_{1}(t) / c_{2}}-q_{1}(t)
\end{array}\right.
$$



Bischi, Mammana, Gardini (2000). "Multistability and cyclic attractors in duopoly games". Chaos, Solitons and Fractals. "Kopel map" $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
T:\left\{\begin{array}{l}
x^{\prime}=r_{1}(y)=\mu_{1} y(1-y) \\
y^{\prime}=r_{2}(x)=\mu_{2} x(1-x)
\end{array}\right.
$$




Fig. 2. The black points represent the periodic points of the five coexisting attracting cycles of the map (5) with $\mu_{1}=3.53$ and $\mu_{2}=3.55$. Each basin of attraction, represented by a different color, is formed by disjoint rectangles, given by the immediate basin (containing the periodic points) and all its preimages.

## Bounded rationality: partial information

$$
q_{i}(t+1)=\arg \max _{q_{i}(t+1)} \pi_{i}^{e}(t+1)
$$

expected profit at time $t+1$ on the basis of information available at time $t$
(1) Expectations on competitor's choices:

$$
q_{i}(t+1)=\arg \max _{q_{i}} f\left(q_{i}+Q_{i}^{e}(t+1)\right) q_{i}-C_{i}\left(q_{i}, q_{-i}^{e}(t+1)\right)
$$

(2) Subjective expected demand function

$$
q_{i}(t+1)=\arg \max _{q_{i}} f^{e}\left(q_{i}+Q_{i}^{e}(t+1)\right) q_{i}-C_{i}\left(q_{i}, q_{-i}^{e}(t+1)\right)
$$

嗇 Bischi, Chiarella, Kopel, Szidarovszky, (2010) Nonlinear Oligopolies: Stability and Bifurcations, Springer.

## Adaptive adjustment towards Best Reply

Inertia in adopting the computed output (anchoring attitude)
$q_{i}(t+1)=\left(1-\lambda_{i}\right) q_{i}(t)+\lambda_{i} R_{i}\left(q_{-i}(t)\right), \quad 0 \leq \lambda_{i} \leq 1$
$\lambda_{i} \in[0,1]$ represents the attitude of firm $i$ to adopt the best reply $\left(1-\lambda_{i}\right)$ is the anchoring, a measure of inertia.

- It reduces to best reply for $\lambda_{i}=1$, complete inertia as $\lambda_{i} \rightarrow 0$.
- It has the same (Nash) equilibria as the best reply model

Example: Kopel model $R_{i}\left(q_{j}\right)=\mu_{i} q_{j}\left(1-q_{j}\right)$


## Adaptive expectations

䍰 Bischi, Kopel (2001). "Equilibrium Selection in a Nonlinear Duopoly Game with Adaptive Expectations", Journal of Economic Behavior and Organization.

$$
\begin{aligned}
& q_{1}(t+1)=R_{1}\left(q_{2}^{e}(t+1)\right) \\
& q_{2}(t+1)=R_{2}\left(q_{1}^{e}(t+1)\right)
\end{aligned}
$$

with adaptive expectations

$$
\begin{aligned}
& q_{1}^{e}(t+1)=q_{1}^{e}(t)+\alpha_{1}\left(q_{1}(t)-q_{1}^{e}(t)\right)=\left(1-\alpha_{1}\right) q_{1}^{e}(t)+\alpha_{1} R_{1}\left(q_{2}^{e}(t)\right) \\
& q_{2}^{e}(t+1)=q_{2}^{e}(t)+\alpha_{2}\left(q_{2}(t)-q_{2}^{e}(t)\right)=\left(1-\alpha_{1}\right) q_{1}^{e}(t)+\alpha_{2} R_{1}\left(q_{2}^{e}(t)\right)
\end{aligned}
$$

$\alpha_{i} \in[0,1]$, adaptive adjustment in the beliefs space.
The real outputs at each step: mapping from beliefs to realizations
$\left\{\begin{array}{l}q_{1}(t)=R_{1}\left(q_{2}^{e}(t)\right) \\ q_{2}(t)=R_{2}\left(q_{1}^{e}(t)\right)\end{array}\right.$
iterated map $T:\left\{\begin{array}{l}x^{\prime}=\left(1-\alpha_{1}\right) x+\alpha_{1} \mu_{1} y(1-y) \\ y^{\prime}=\left(1-\alpha_{2}\right) y+\alpha_{2} \mu_{2} x(1-x)\end{array}\right.$

## Theorem

(Global bifurcation of the basins with homogeneous players). Let $\alpha_{1}=\alpha_{2}=\alpha$ and $\mu_{1}=\mu_{2}=\mu$. If $\alpha(\mu+1)<1$ then the two basins are simply connected sets; if $\alpha(\mu+1)>1$ they are formed by infinitely many disjoint components.


Jacobian matrix: $\quad D T(x, y)=\left[\begin{array}{cc}1-\alpha_{1} & \alpha_{1} \mu_{1}(1-2 y) \\ \alpha_{2} \mu_{2}(1-2 x) & 1-\alpha_{2}\end{array}\right]$
$L C_{-1}: \operatorname{det} D T=0$, i.e. $\quad\left(x-\frac{1}{2}\right)\left(y-\frac{1}{2}\right)=\frac{\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}{4 \alpha_{1} \alpha_{2} \mu_{1} \mu_{2}}$
Equilateral hyperbola, union of two branches $L C_{-1}=L C_{-1}^{(a)} \cup L C_{-1}^{(b)}$, Hence also $L C=T\left(L C_{-1}\right)$ is formed by two disjoint branches

(a)

(b)

(c)

## Symmetric case

$K_{-1}=L C_{-1}^{(b)} \cap \Delta=\left(k_{-1}, k_{-1}\right)$ with $k_{-1}=\frac{\alpha(\mu-1)-1}{2 \alpha \mu}$ the eigenvalue $z_{\perp}$ vanishes and the curve $L C^{(b)}=T\left(L C_{-1}^{(b)}\right)$ has a cusp point
$K=L C^{(b)} \cap \Delta=(k, k)$ with $k=f\left(k_{-1}\right)=\frac{(\alpha(\mu+1)-1)(\alpha \mu+3(1-\alpha))}{4 \alpha \mu}$ at $\alpha(\mu+1)=1 K \equiv O$ and the cusp point $K$.


## Heterogeneous behaviour: computer aided proof?

$$
\mu_{1}=\mu_{2}=3.6 \lambda_{1}=0.55 \lambda_{2}=0.7 \quad \mu_{1}=\mu_{2}=3.6 \lambda_{1}=0.59 \lambda_{2}=0.7
$$



## Beyond 2D. Case of a triopoly game

圊 Bischi G.I., L. Mroz and H. Hauser (2001). "Studying basin bifurcations in nonlinear triopoly games by using 3D visualization". NonlinearAnalysis TMA.


## Local Monopolistic Approximation (LMA)

Bischi, Naimzada, Sbragia (2007) "Oligopoly Games with Local Monopolistic Approximation " Journal of Economic Behavior \& Organization

Firms do not know the demand, at any time get a correct (local) estimate of demand slope by marketing experiments of small quantity variations

$$
\frac{\partial f(Q)}{\partial q_{i}}=\frac{d f(Q)}{d Q} \simeq \frac{f\left(q_{i}(t)+\Delta q_{i}+q_{-i}(t)\right)-f\left(q_{i}(t)+q_{-i}(t)\right)}{\Delta q_{i}}
$$

or small price variations: $\frac{\partial f(Q)}{\partial q_{i}}=\frac{d f(Q)}{d Q}=\left[\frac{d Q(p)}{d p}\right]^{-1}$ where $Q=f^{-1}(p)$
Conjectured demand function: Linear and monopolistic approximation
$p^{e}(t+1)=p(t)+f^{\prime}(Q)\left(q_{i}(t+1)-q_{i}(t)\right), \quad$ where $p(t)=f(Q(t))$
FOC becomes $\left.p(t)+2 f^{\prime}(Q) q_{i}(t+1)-f^{\prime}(Q) q_{i}(t)\right)-C_{i}^{\prime}\left(q_{i}(t+1)\right)=0$

From $\left.f(Q)+2 f^{\prime}(Q) q_{i}(t+1)-f^{\prime}(Q) q_{i}(t)\right)-C_{i}^{\prime}\left(q_{i}(t+1)\right)=0$ A linear equation, hence an explicit dynamical system, is get with:

LMA with linear cost $C_{i}=c_{i} q_{i}$

$$
q_{i}(t+1)=\frac{1}{2} q_{i}(t)-\frac{f(Q(t))-c_{i}}{2 f^{\prime}(Q(t))} \quad i=1, \ldots, n
$$

LMA with quadratic cost $C_{i}=\left(c_{i 0}+c_{i} q_{i}\right) q_{i}$

$$
q_{i}(t+1)=\frac{q_{i}(t) f_{i}(t)-p(t)}{2\left[f_{i}(t)-c_{i}\right]} \quad i=1, \ldots, n
$$

The steady states are the Cournot-Nash equilibria
Reduced Information set for a form using LMA approach
(i1) No knowledge of demand function, only local estimate of slope;
(i2) No expectations on other firms' future production;
(i3) Solve a quadratic optimization problem, i.e. a linear equation;

## No optimization at all: Just following the Profit Gradient

圊 Bischi, Naimzada (2000) "Global Analysis of a Duopoly game with Bounded Rationality", in Advances in Dyn. Games and applications

Each firm infers how the market will respond to its production changes by a (correct) estimate of the marginal profit $\frac{\partial \pi_{i}}{\partial q_{i}}$.

## Gradient (or myopic) adjustment

With this local information a firm increases (decreases) its output if it perceives a positive (negative) marginal profit

$$
q_{i}(t+1)=q_{i}(t)+v_{i} q_{i}(t) \frac{\partial \pi_{i}(t)}{\partial q_{i}} ; \quad i=1,2
$$

where $v_{i}$ is a relative speed of adjustment, being $\frac{q_{i}(t+1)-q_{i}(t)}{q_{i}(t)}=v_{i} \frac{\partial \pi_{i}}{\partial q_{i}}$.

## Example: linear demand $p=a-b Q$, linear costs $C i=c i q i$

Profit: $\Pi_{i}\left(q_{1}, q_{2}\right)=q_{i}\left[a-b\left(q_{1}+q_{2}\right)-c_{i}\right]$
Marginal profit $\frac{\partial \Pi_{j}}{\partial q_{i}}=a-c_{i}-2 b q_{i}-b q_{j} \quad, \quad i, j=1,2, j \neq i$.
Model with profit gradient relative adjustment

$$
\left\{\begin{array}{l}
q_{1}(t+1)=\left(1+v_{1}\left(a-c_{1}\right)\right) q_{1}(t)-2 b v_{1} q_{1}^{2}(t)-b v_{1} q_{1}(t) q_{2}(t) \\
q_{2}(t+1)=\left(1+v_{2}\left(a-c_{2}\right)\right) q_{2}(t)-2 b v_{2} q_{2}^{2}(t)-b v_{2} q_{1} q_{2}(t)
\end{array}\right.
$$

Invariant axes with boundary equilibria
$E_{0}=(0,0), E_{1}=\left(\frac{a-c_{1}}{2 b}, 0\right), E_{2}=\left(0, \frac{a-c_{2}}{2 b}\right)$
Interior (Nash) equilibrium
$E_{*}=\left(\frac{a+c_{2}-2 c_{1}}{3 b}, \frac{a+c_{1}-2 c_{2}}{3 b}\right)$

## Complex attractors and basins

$$
v 1=.4065 \quad v 2=.535 \quad c 1=3 \quad c 2=5 \quad a=10 \quad b=.5
$$



## Case of identical players

The dynamical system is the same if the variables are swapped:
$T \circ P=P \circ T, P:\left(x_{1}, x_{2}\right) \rightarrow\left(x_{2}, x_{1}\right)$ reflection through the diagonal $\Delta$. This implies that the diagonal is mapped into itself, i.e., $T(\Delta) \subseteq \Delta$ : Identical players starting from identical initial conditions behave identically for each time (synchronized trajectories) governed by the map

$$
\mathbf{x}(t+1)=f(\mathbf{x}(t)) \quad \text { with } \quad f=\left.T\right|_{\Delta}: \Delta \rightarrow \Delta
$$

"representative agent" whose dynamics summarize the common behavior of the synchronized competitors.
Bischi, Gallegati, Naimzada (1999). "Symmetry-breaking bifurcations and representative firm in dynamic duopoly games". Annals of Operations Research
围 Bischi, Stefanini, Gardini (1998) "Synchronization, intermittency and critical curves in duopoly games", Mathematics and Computers in Simulations.

A trajectory starting out of $\Delta$, i.e. with $x_{0} \neq y_{0}$, is said to synchronize if $\left|x_{1}(t)-x_{2}(t)\right| \rightarrow 0$ as $t \rightarrow+\infty$.

## Problem

Let $A_{s}$ be an attractor of the one-dimensional restriction. Is it also an attractor for the two-dimensional map $T$ ?

A question of transverse stability: stability of $A_{s}$ with respect to perturbations transverse to $\Delta$

Interesting when dynamics on $\Delta$ are chaotic (chaos synchronization)
The key property is that a chaotic set $A_{s}$ includes infinitely many periodic points which are unstable in the direction along $\Delta$.
$D T(x, x)=\left\{T_{i j}(x)\right\}: T_{11}=T_{22}$ and $T_{12}=T_{21}$.
Eigenvalues $\lambda_{\|}(x)=T_{11}(x)+T_{12}(x)$
and $\quad \lambda_{\perp}(x)=T_{11}(x)-T_{12}(x)$
with related eigenvectors $\mathbf{v}_{\|}=(1,1), \mathbf{v}_{\perp}=(1,-1)$
Transverse Lyapunov exponents $\Lambda_{\perp}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=0}^{N} \ln \left|\lambda_{\perp}\left(s_{i}\right)\right|$ where $\left\{s_{i}=f^{i}\left(s_{0}\right), i \geq 0\right\}$ is a trajectory embedded in $A_{s}$.

Spectrum of transverse Lyapunov exponents computed at the infinitely many periodic cycles

$$
\Lambda_{\perp}^{\min } \leq \ldots \leq \Lambda_{\perp}^{n a t} \leq \ldots \leq \Lambda_{\perp}^{\max }
$$

$\Lambda_{\perp}^{\text {nat }}$ computed along a generic aperiodic trajectory, is a "weighted balance" between the transversely repelling and attracting cycles.


If $\Lambda_{\perp}^{\max }<0$ (all cycles embedded in $A_{s}$ are transversely stable) $A_{s}$ is asymptotically stable.
If $\Lambda_{\perp}^{\max }>0$, while $\Lambda_{\perp}^{\text {nat }}<0, A_{s}$ is not Lyapunov stable, but is a Milnor attractor

Definition. A closed invariant set $A$ is said to be a weak attractor in Milnor sense (or simply Milnor attractor) if its stable set $B(\mathcal{A})$ has positive Lebesgue measure.
Note that a topological attractor is also a Milnor attractor, whereas the converse is not true.


If $\mathcal{A} \subset \Delta$ is a chaotic attractor of $\left.T\right|_{\Delta}$ then it is a non-topological Milnor attractor if
(a) $\Lambda_{\perp}^{\max }>0$
(b) $\Lambda_{\perp}^{n a t}<0$.
$\Lambda_{\perp}^{\max }$ from negative to positive marks a riddling（or bubbling）bifurcation． Two possible scenarios according to the fate of locally repelled trajectories： （L）they can be reinjected towards $\Delta$（after some bursts far from $\Delta$ before synchronizing，on－off intermittency）；
（G）they may belong to the basin of another attractor（riddled basins）

## A bridge between critical sets and chaos synchronization

Locally repelled trajectories folded back toward $A_{s}$ by the action of the non linearities acting far from $\Delta$ ，described by using the critical curves as the reinjection is due to their folding action．
國 Bischi，Gardini（1998）＂Role of invariant and minimal absorbing areas in chaos synchronization＂，Physical Review E

围 Bischi，Gardini（2000）Global Properties of Symmetric Competition Models with Riddling and Blowout Phenomena＂，Discrete Dynamics in Nature and Society

目 Bischi，Cerboni Baiardi（2017）＂Bubbling，Riddling，Blowout and Critical Curves＂，Journal of Difference Equations and Applications

## An example:Dynamic marketing model

E Bischi, Gardini,Kopel (2000) "Analysis of Global Bifurcations in a Market Share Attraction Model", Jou. of Economic Dynamics and Control
國 Bischi, Gardini (2000) "Global Properties of Symmetric Competition Models with Riddling and Blowout Phenomena", Discrete Dynamics in Nature and Society.

$$
\begin{aligned}
x_{i}(t+1) & =x_{i}(t)+\lambda_{i} x_{i}(t) \Pi_{i}(t)= \\
& =x_{i}(t)+\lambda_{i} x_{i}(t)\left(B \frac{a_{i} x_{i}^{\beta_{i}}(t)}{\sum_{j=i}^{n} a_{j} x_{j}^{\beta_{j}}(t)}-x_{i}(t)\right) \quad i=1, \ldots, N
\end{aligned}
$$

$N=2$ : Symmetric case $\lambda_{1}=\lambda_{2}=\lambda, \quad a_{1}=a_{2}=a, \quad \beta_{1}=\beta_{2}=\beta$ Restriction of the symmetric map to $\Delta$
$f(x)=\left(1+\frac{1}{2} \lambda B\right) x-\lambda x^{2}$
Jacobian matrix on the diagonal:
$D T(x, x ; \lambda, B, \beta)=,\left[\begin{array}{cc}1-2 \lambda x+\frac{\lambda B(\beta+2)}{4} & -\frac{\lambda B \beta}{4} \\ -\frac{\lambda B \beta}{4} & 1-2 \lambda x+\frac{\lambda B(\beta+2)}{4}\end{array}\right]$.


嗇 Bischi, Cerboni Baiardi (2017) "Bubbling, Riddling, Blowout and Critical Curves", Journal of Difference Equations and Applications


Figure 8. For $B=10$ and $\lambda=2\left(a_{1}-1\right) / B$, the natural transverse Lyapunov exponent (black line) of the four-band chaotic attractor $\mathcal{A}_{s} \subset \Delta$ is represented as the normal parameter $\beta$ varies, as well as the transverse Lyapunov exponents of the cycles of period 4 and 8 embedded in $A_{s}$ (red lines).


Figure 9. A numerical simulation of the system (14) obtained for $B=10, \lambda=2\left(\bar{\mu}_{2}-1\right) / B$ and $\beta=0.09$ at which $\Lambda_{\perp}^{\text {nat }}<0$ while $\left.\Lambda_{\perp}\left(C^{8}\right)>0\right)$. Left. A trajectory in the phase space $\left(x_{t}, y_{t}\right)$ whose transient part is out of $\Delta$ that synchronizes along the Milnor attractor $\mathcal{A}_{s}$ in the long run. The white region is the basin of attraction of $\mathcal{A}_{s}$ whereas the points in the grey region generate interrupted trajectories, involving negative values of the state variables. The further green region is the basin of attraction of a stable period-two cycle. Right. The displacement $x_{t}-y_{t}$ vs. time.


Figure 10. Left. Minimal invariant absorbing area $\mathcal{A}$ obtained by six iteration of the generating arc $\Gamma$ (blue line) where $T^{k}=T^{k}(\Gamma), k=1, \ldots, 6$ (red lines). Right. The effect of the parameters' mismatch $a_{X}=0.514961$ and $a_{v}=0.51496$. Other parameters are as in Figure 9 .

## With parameters' mismatch bursts never stop




Figure 11. Global riddling at $\beta=0.0945$.

## Games and lobes: isoelastic demand $p=1 / Q$

$\pi_{i}\left(q_{1}, q_{2}\right)=\frac{q_{i}}{q_{1}+q_{2}}-c_{i} q_{i}$ hence $\frac{\partial \pi_{i}}{\partial q_{1}}=\frac{q_{j}}{\left(q_{1}+q_{2}\right)^{2}}-c_{i}$
gradient dynamics $\left\{\begin{array}{l}q_{1}(t+1)=q_{1}(t)\left(1-c_{1} v_{1}+v_{1} \frac{q_{2}(t)}{\left(q_{1}(t)+q_{2}(t)\right)^{2}}\right) \\ q_{1}(t+1)=q_{2}(t)\left(1-c_{2} v_{2}+v_{2} \frac{q_{1}(t)}{\left(q_{1}(t)+q_{2}(t)\right)^{2}}\right)\end{array}\right.$


## Heterogenous players and evolution of different bevaviors



## Competitions of behavioural rules: replicator dynamics

- Population of $N$ agents, partitioned into $k$ groups according to the strategy (or behavior) adopted $S=\left\{S_{1}, \ldots, S_{k}\right\}$.
- $N_{i}(t)$ agents follow behavior $S_{i}$ at time $t, \sum_{i=1}^{k} N_{i}(t)=N$
- $r_{i}(t)=\frac{N_{i}(t)}{N(t)}, \sum_{i=1}^{k} r_{i}(t)=1$

Selection mechanism: The growth of $r_{i}$ is proportional to payoff obtained $\pi_{i}$ compared with average payoff $\bar{\pi}=\sum_{i=1}^{k} r_{i} \pi_{i}$.
Monotone transformation of payoffs $u\left(\pi_{i}\right)=\exp \left(\beta \pi_{i}\right), \beta>0$, and consequently $\bar{u}=\sum_{i=1}^{k} r_{i} \exp \left(\beta \pi_{i}\right)$.

## Exponential replicator dynamics

$$
\begin{aligned}
& q_{i}(t+1)=H_{i}\left(q_{1}(t), \ldots, q_{n}(t), r_{1}(t), \ldots, r_{n}(t)\right) \quad i=1, \ldots, N \\
& r_{i}(t+1)=r_{i}(t) \frac{e^{\beta \pi_{i}(t)}}{\sum_{j=1}^{n} r_{j}(t) e^{\beta \pi_{j}(t)}}
\end{aligned}
$$

## Compare two decision strategies

$N$ firms partitioned into 2 groups according to behavior adopted

$$
\begin{aligned}
& \left\{\begin{array}{l}
q_{1}(t+1)=H_{1}\left(q_{1}(t), q_{2}(t), r(t)\right) \\
q_{2}(t+1)=H_{2}\left(q_{1}(t), q_{2}(t), r(t)\right) \\
r(t+1)=r(t) \frac{e^{\beta \pi_{1}(t)}}{r(t) e^{\beta \pi_{1}(t)}+(1-r(t)) e^{\beta \pi_{2}(t}}
\end{array}\right. \\
& Q(t)=N\left[r(t) q_{1}(t)+(1-r(t)) q_{2}(t)\right]
\end{aligned}
$$

with $r(t)=\frac{n_{1}(t)}{N}$ evolving according to exponential replicator


## Example: Best Reply versus LMA

Bischi, Lamantia, Radi (2015). "An evolutionary Cournot model with limited market knowledge". J. Econ. Behavior \& Organization.
$B R$ with isoelastic demand $p=1 / Q$, linear cost, naive expectations
$q_{1}(t+1)=R_{1}\left(q_{2}(t)\right)=\sqrt{\frac{q_{2}(t)}{c_{1}}}-q_{2}(t)$
$q_{2}(t+1)=R_{2}\left(q_{1}(t)\right)=\sqrt{\frac{q_{1}(t)}{c_{2}}}-q_{1}(t)$

## LMA with isoelastic demand $\mathrm{p}=\mathrm{f}(\mathrm{Q})=1 / \mathrm{Q}$ and linear costs

from $\quad q_{i}(t+1)=\frac{1}{2} q_{i}(t)-\frac{f(Q(t))-c_{i}}{2 f^{\prime}(Q(t))} \quad i=1,2$
with $p=f(Q)=\frac{1}{Q}, \quad Q=q_{1}+q_{2}$, we get:

$$
\begin{aligned}
& q_{1}(t+1)=\frac{1}{2}\left[2 q_{1}(t)+q_{2}(t)-c_{1}\left(q_{1}(t)+q_{2}(t)\right)^{2}\right] \\
& q_{2}(t+1)=\frac{1}{2}\left[q_{1}(t)+2 q_{2}(t)-c_{2}\left(q_{1}(t)+q_{2}(t)\right)^{2}\right]
\end{aligned}
$$

## Evolutionary pressure based on observed profits

$$
\begin{aligned}
& \pi_{B R}=p x-\left(c_{x} x+K_{x}\right)=\left(\frac{1}{Q}-c_{x}\right) x-K_{x} \\
& \pi_{L M A}=p y-\left(c_{y} y+K_{y}\right)=\left(\frac{1}{Q}-c_{y}\right) y-K_{y}
\end{aligned}
$$

$K_{x} \geq K_{y}$ information costs of $B R$ and $L M A$ behaviors..
The fraction $r(t)$ updated according to exp. replicator dynamics

$$
r(t+1)=r(t) \frac{e^{\beta \pi_{B R}(t)}}{r(t) e^{\beta \pi_{B R}(t)}+(1-r(t)) e^{\beta \pi_{L M A}(t)}}
$$

$\beta>0$ intensity of choice:
$\beta=0$ agents do not switch;
$\beta=\infty$ implies $r(t) \rightarrow 1$ if $\pi_{B R}(t)>\pi_{L M A}(t)$ and $r(t) \rightarrow 0$ if $\pi_{B R}(t)<\pi_{L M A}(t)$.

- Steady states: $r=0 ; r=1$; any $r^{*} \in(0,1)$ such that $\pi_{B R}=\pi_{L M A}$.


## Coexistence of cyclic attractors and path dependence

$$
\begin{aligned}
& \lambda=\alpha=0.3, c=0.1, \delta=0, \beta=1, K_{x}=0.01, K_{y}=0, N=15 \text {, } \\
& \text { two different i.c. }
\end{aligned}
$$

Two periodic attractors in pure strategies (red)


## Path dependence: coexistence of chaotic (BR) and periodic (LMA) attractors

$$
\lambda=0.6, \alpha=0.7, c=0.1, \delta=0, \beta=1, K_{x}=0.01, K_{y}=0,
$$

$N=8$, two different i.c.


## Transverse stability switch

$$
\lambda=0.6, \alpha=0.7, c=0.1, \delta=0, \beta=1, K_{x}=0.01, K_{y}=0
$$




## Attractors with intermediate $r$ values

$$
\begin{aligned}
& \lambda=0.5, \alpha=0.7, c=0.1, \delta=0, \beta=1, K_{x}=0.1, K_{y}=0 \\
& \text { i.C. }(x(0), y(0), r(0))=(0.1,0.2,0.5)
\end{aligned}
$$



## Coexistence chaotic dynamics

## Same parameters and $N=10$






## Intermittent dynamics

Same parameters but info cost increased at $K_{x}=0.8$




## Further extensions

围 Bischi, Lamantia, Scardamaglia (2020) "On the influence of memory on complex dynamicsof evolutionary oligopoly models", Nonlinear Dynamics
Fitness measured as accumulated payoff instead of current payoff

$$
U_{i}(t)=(1-\omega) \pi_{i}(t)+\omega U_{i}(t-1)
$$

$\omega \in[0,1]$ memory parameter :
for $\omega=0, U_{i}(t)=\pi_{i}(t)$
for $\omega=1$, uniform mean of all the payoffs of the past.
Recursive formula (accumulated payoff)

$$
U_{i}(t)=(1-\omega) \sum_{k=0}^{t-1} \omega^{k} \pi_{i}(t-k)+\omega^{t} U_{i}(0), \quad i=1,2
$$

## Model with memory

$$
\begin{aligned}
& T:\left\{\begin{array}{l}
x_{1}(t+1)=H_{1}\left(x_{1}(t), x_{2}(t), r(t)\right) \\
x_{2}(t+1)=H_{2}\left(x_{1}(t), x_{2}(t), r(t)\right) \\
r(t+1)=R(r(t), m(t))=\frac{r(t)}{r(t)+(1-r(t)) e^{-\beta m(t)}} \\
m(t+1)=(1-\omega)\left(\pi_{1}(t+1)-\pi_{2}(t+1)\right)+\omega m(t)
\end{array}\right. \\
& m(t)=U_{1}(t)-U_{2}(t)
\end{aligned}
$$

- Often memory has a stabilizing effect, but not always.


## Other "competitions" between different behaviors

围 Cerboni Baiardi, Lamantia, Radi (2015) "Evolutionary competition between boundedly rational behavioral rules in oligopoly games", Chaos, Solitons \& Fractals
Competition between Local Monopolistic Approximation and Gradient dynamics.
Radi (2017) "Walrasian versus Cournot behavior in an oligopoly of boundedly rational firms", Journal of Evolutionary Economics Competition between Best Reply and a Walrasian rule.
囯 Bischi, Lamantia, Radi (2013) "Multi-species exploitation with evolutionary switching of harvesting strategies", Nat. Res. Modeling Hybrid model: Fish grows in continuous time, fishers switch (according to profit-driven replicator) the harvesting strategy at discrete periods
Radi, Lamantia, Tichý (2021) «Hybrid dynamics of multi-species resource exploitation » Decisions in Economics and Finance Through a discretization of the continuous variables, the problem is reformulated as three-dimensional iterated map.

## Some further evolutionary dynamics

On exponential replicator switching function

- Cabrales, Sobel (1992) "On the limit points of discrete selection dynamics", J. Econ.Theory.
- Hofbauer, Sigmund (2003) "Evolutionary Game Dynamics", Bulletin of The American Mathematical Society.

On evolutionary dynamics with Logit switching functions

- Brock, Hommes (1997) A rational route to randomness. Econometrica.
- Droste, Hommes, Tuinstra (2002) "Endogenous Fluctuations Under Evolutionary Pressure in Cournot Competition", Games and Economic Behavior.

Other imitation switching mechanisms

- Bischi, Dawid, Kopel (2003) «Spillover Effects and the Evolution of Firm Clusters» Jou. Econ. Behavior \& Organization

