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Preface

In the theory of ordinary differential equations we can distinguish two fundamental
problems. The first, which we may call the direct problem, is, in a broad sense,
to find all solutions of a given ordinary differential equation. The second, which
we may call the inverse problem and which is the focus of this work, is to find
the most general differential system that satisfies a given set of properties. For
instance, we might wish to identify all differential systems in R

N that have a
given set of invariant hypersurfaces or that admit a given set of first integrals.

Probably the first inverse problem to be explicitly formulated was the prob-
lem in celestial mechanics, stated and solved by Newton in Philosophiae Naturalis
Principia Mathematica (1687), of determining the potential force field that yields
planetary motions that conform to the motions that are actually observed, namely,
to Kepler’s laws.

In 1877 Bertrand [10] proved that the expression for Newton’s force of at-
traction can be obtained directly from Kepler’s first law. He also stated the more
general problem of determining the positional force under which a particle de-
scribes a conic section for any initial conditions. Bertrand’s ideas were developed
in particular in the works [42, 51, 78, 149].

In the modern scientific literature the importance of this kind of inverse
problem in celestial mechanics was already recognized by Szebehely, see [152].

In view of Newton’s second law, that acceleration is proportional to the
applied force, it is clear that the inverse problems just mentioned are equivalent
to determining second-order differential equations based on prespecified properties
of the right-hand side of the equations.

The first statement of an inverse problem as the problem of finding the most
general first-order differential system satisfying a given set of properties was stated
by Erugin [52] in dimension two and developed by Galiullin in [60, 61].

The new approach to inverse problems that we propose uses as an essential
tool the Nambu bracket. We deduce new properties of this bracket which play a
major role in the proof of all the results of this work and in their applications. We
observe that the applications of the Nambu bracket that we will give in this book
are original and represent a new direction in the development of the theory of the
Nambu bracket.

ix
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x Preface

In the first chapter we present results of two different kinds. First, under very
general assumptions we characterize the ordinary differential equations in RN that
have a given set of M partial integrals, or a given set of M < N first integrals, or
a given set of M ≤ N partial and first integrals. Second, we provide necessary and
sufficient conditions for a system of differential equations in RN to be integrable,
in the sense that the system admits N − 1 independent first integrals.

Because of the unknown functions that appear, the solutions of the inverse
problems in ordinary differential equations that we give in the first chapter have a
high degree of arbitrariness. To reduce this arbitrariness we must impose additional
conditions. In the second chapter we are mainly interested in planar polynomial
differential systems that have a given set of polynomial partial integrals. We dis-
cuss the problem of finding the planar polynomial differential equations whose
phase portraits contain invariant algebraic curves that are either generic (in an
appropriate sense), or contain invariant algebraic curves that are non-singular in
RP

2 or are nonsingular in R2, or that contain singular invariant algebraic curves.
We study the particular case of quadratic polynomial differential systems with one
singular algebraic curve of arbitrary degree.

In the third chapter we state Hilbert’s 16th problem restricted to algebraic
limit cycles. Consider Σ′

n, the set of all real polynomial vector fields X = (P,Q)
of degree n having real irreducible invariant algebraic curves (where irreducibility
is with respect to R[x, y]). A simpler version of the second part of Hilbert’s 16th
problem restricted to algebraic limit cycles can be stated as follows: Is there an
upper bound on the number of algebraic limit cycles of any polynomial vector field
of Σ′

n? By applying the results given in the second chapter we solve this simpler
version of Hilbert’s 16th problem for two cases: (a) when the given invariant al-
gebraic curves are generic (in a suitable sense), and (b) when the given invariant
algebraic curves are non-singular in CP

2. We state the following conjecture: The
maximum number of algebraic limit cycles for polynomial planar vector fields of
degree n is 1 + ((n− 1)(n− 2)/ 2). We prove this conjecture for the case where n
is even and the algebraic curves are generic M-curves, and for the case that all the
curves are non-singular in R

2 and the sum of their degrees is less than n+ 1.

We observe that Hilbert formulated his 16th problem by dividing it into two
parts. The first part asks for the mutual disposition of the maximal number of
ovals of an algebraic curve; the second asks for the maximal number and relative
positions of the limit cycles of all planar polynomial vector fields X = (P,Q) of a
given degree. Traditionally the first part of Hilbert’s 16th problem has been studied
by specialists in real algebraic geometry, while the second has been investigated
by mathematicians working in ordinary differential equations. Hilbert also pointed
out that connections are possible between these two parts. In the third chapter
we exhibit such a connection through the Hilbert problem restricted to algebraic
limit cycles.

In the fourth chapter, applying results of the first chapter we state and solve
the inverse problem for constrained Lagrangian mechanics: for a given natural
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Preface xi

mechanical system with N degrees of freedom, determine the most general force
field that depends only on the position of the system and that satisfies a given set of
constraints linear in the velocity. One of the main objectives in this inverse problem
is to study the behavior of constrained Lagrangian systems with constraints linear
in the velocity in a way that is different from the classical approach deduced
from the d’Alembert–Lagrange principle. As a consequence of the solution of the
inverse problem for the constrained Lagrangian systems studied here we obtain
the general solution for the inverse problem in dynamics for mechanical systems
with N degrees of freedom. We also provide the answer to the generalized Dainelli
inverse problem, which before was solved only for N = 2 by Dainelli. We give
a simpler solution to Suslov’s inverse problem than the one obtained by Suslov.
Finally, we provide the answer to the generalized Dainelli–Joukovsky problem
solved by Joukovsky in the particular case of mechanical systems with two or
three degrees of freedom.

Chapter 5 is devoted to the inverse problem for constrained Hamiltonian sys-
tems. That is, for a given submanifoldM of a symplectic manifold M we determine
the differential systems whose local flow leaves the submanifold M invariant. We
study two cases: (a)M is determined by l first integrals with l ∈ [dimM/2, dimM),
and (b) M is determined by l < dimM/2 partial integrals. The solutions are ob-
tained using the basic results of the first chapter. In general, the given set of first
integrals is not necessarily in involution. The solution of the inverse problem in
constrained Hamiltonian systems shows that in this case the differential equations
having the invariant submanifold M are not in general Hamiltonian. The origin of
the theory of noncommutative integration, dealing with Hamiltonian systems with
first integrals that are not in involution, started with Nekhoroshev’s Theorem.

Chapter 6 deals with the problem of the integrability of a constrained rigid
body. We apply the results given in Chapter 4 to analyze the integrability of the
motion of a rigid body around a fixed point. If the absence of constraints the
integrability of this system is well known. But the integration of the equations
of motion of this mechanical system with constraints is incomplete. We study
two classical problems of constrained rigid bodies, the Suslov and the Veselova
problems. We present new cases of integrability for these two problems which
contain as particular cases the previously known results.

We also study the equations of motion of a constrained rigid body when the
constraint is linear in the velocity with excluding the Lagrange multiplier. By using
these equations we provide a simple proof of the well-known theorem of Veselova
and improve Kozlov’s result on the existence of an invariant measure. We give a
new approach to solving the Suslov problem in the absence of a force field and of
an invariant measure.

In Chapter 7 we give three main results:

(i) A new point of view on transpositional relations. In nonholonomic mechanics
two points of view on transpositional relations have been maintained, one
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xii Preface

supported by Volterra, Hammel, and Hölder, and the other supported by
Suslov, Voronets, and Levi-Civita. The second point of view has acquired
general acceptance, while the first has been considered erroneous. We propose
a third point of view, which is a generalization of the second one.

(ii) A new generalization of the Hamiltonian principle. There are two well-known
generalizations of the Hamiltonian principle: the Hölder–Hamiltonian princi-
ple and the Suslov–Hamiltonian principle. We propose another generalization
of the Hamiltonian principle, one that plays an important role in the solution
of the inverse problem that we state in the next item.

(iii) Statement and solution of the inverse problem in vakonomic mechanics. We
construct the variational equations of motion describing the behavior of con-
strained Lagrangian systems. Using the solution of the inverse problem in
vakonomic mechanics, we present a modification of vakonomic mechanics
(MVM). This modification is valid for holonomic and nonholonomic con-
strained Lagrangian systems. We deduce the equations of motion for non-
holonomic systems with constraints that in general are nonlinear in the ve-
locity. These equations coincide, except perhaps on a set of Lebesgue measure
zero, with the classical differential equations deduced from the d’Alembert–
Lagrange principle.

We observe that the solution of the inverse problem in vakonomic mechanics
plays a fundamental role in the new point of view on transpositional relations and
the new generalization of the Hamiltonian principle that we present.

Several aspects of our work support the following conjecture: The existence
of mechanical systems with constraints that are not linear in the velocity must be
sought outside Newtonian Mechanics.

Finally we remark that the inverse approach in ordinary differential equations
which we propose in this book, based on the development of properties of the
Nambu bracket, yields a unifed approach to the study of such diverse problems
as finding all differential systems with given partial and first integrals, Hilbert’s
16th problem, constrained Lagrangian and Hamiltonian systems, integrability of
constrained rigid bodies, and vakonomic mechanics.
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