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Preface

Our aim is to study ordinary differential equations or simply differential sys-
tems in two real variables

z = P(x,y),
. (z,y) 0.1)
y =Q(z,y),
where P and @ are C" functions defined on an open subset U of R?, with
r=1,2,...,00,w. As usual C* stands for analyticity. We put special emphasis

onto polynomial differential systems, i.e., on systems (0.1) where P and Q are
polynomials.

Instead of talking about the differential system (0.1), we frequently talk
about its associated wvector field

X = Plaa)y + Q) (02

on U C R2. This will enable a coordinate-free approach, which is typical in
the theory of dynamical systems. Another way expressing the vector field is by
writing it as X = (P, Q). In fact, we do not distinguish between the differential
system (0.1) and its vector field (0.2).

Almost all the notions and results that we present for two-dimensional
differential systems can be generalized to higher dimensions and manifolds;
but our goal is not to present them in general, we want to develop all these
notions and results in dimension 2. We would like this book to be a nice
introduction to the qualitative theory of differential equations in the plane,
providing simultaneously the major part of concepts and ideas for developing
a similar theory on more general surfaces and in higher dimensions. Except
in very limited cases we do not deal with bifurcations, but focus on the study
of individual systems.

Our goal is certainly not to look for an analytic expression of the global
solutions of (0.1). Not only would it be an impossible task for most differential
systems, but even in the few cases where a precise analytic expression can be
found it is not always clear what it really represents. Numerical analysis of a
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differential system (0.1) together with graphical representation are essential
ingredients in the description of the phase portrait of a system (0.1) on U; that
is, the description of U as union of all the orbits of the system. Of course,
we do not limit our study to mere numerical integration. In fact in trying
to do this one often encounters serious problems; calculations can take an
enormous amount of time or even lead to erroneous results. Based however
on a priori knowledge of some essential results on differential systems (0.1),
these problems can often be avoided.

Qualitative techniques are very appropriate to get such an overall under-
standing of a differential system (0.1). A clear picture is achieved by drawing
a phase portrait in which the relevant qualitative features are represented;
it often suffices to draw the “extended separatrix skeleton.” Of course, for
practical reasons, the representation must not be too far from reality and
has to respect some numerical accuracy. These are, in a nutshell, the main
ingredients in our approach.

The basic results on differential systems and their qualitative theory are
introduced in Chap.1. There we present the fundamental theorems of exis-
tence, uniqueness, and continuity of the solutions of a differential system with
respect the initial conditions, the notions of a- and w-limit sets of an orbit,
the Poincaré—Bendixson theorem characterizing these limit sets and the use of
Lyapunov functions in studying stability and asymptotic stability. We analyze
the local behavior of the orbits near singular points and periodic orbits. We
introduce the notions of separatrix, separatrix skeleton, extended (and com-
pleted) separatrix skeleton, and canonical region that are basic ingredients for
the characterization of a phase portrait.

The study of the singular points is the main objective of Chaps. 2, 3, 4,
and 6, and partially of Chap.5. In Chap.2 we mainly study the elementary
singular points, i.e., the hyperbolic and semi-hyperbolic singular points. We
also provide the normal forms for such singularities providing complete proofs
based on an appropriate two-dimensional approach and with full attention to
the best regularity properties of the invariant curves. In Chap. 3, we provide
the basic tool for studying all singularities of a differential system in the plane,
this tool being based on convenient changes of variables called blow-ups. We
use this technique for classifying the nilpotent singularities.

A serious problem consists in distinguishing between a focus and a center.
This problem is unsolved in general, but in the case where the singular point
is a linear center there are algorithms for solving it. In Chap. 4 we present the
best of these algorithms currently available.

Polynomial differential systems are defined in the whole plane R2. These
systems can be extended to infinity, compactifying R? by adding a circle,
and extending analytically the flow to this boundary. This is done by the so-
called “Poincaré compactification,” and also by the more general “Poincaré—
Lyapunov compactification.” In both cases we get an extended analytic differ-
ential system on the closed disk. In this way, we can study the behavior of the
orbits near infinity. The singular points that are on the circle at infinity are
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called the infinite singular points of the initial polynomial differential system.
Suitably gluing together two copies of the extended system, we get an analytic
differential system on the two-dimensional sphere.

In Chap. 6 we associate an integer to every isolated singular point of a two-
dimensional differential system, called its index. We prove the Poincaré-Hopf
theorem for vector fields on the sphere that have finitely many singularities:
the sum of the indices is 2. We also present the Poincaré formula for computing
the index of an isolated singular point.

After singular points the main subjects of two-dimensional differential sys-
tems are limit cycles, i.e., periodic orbits that are isolated in the set of all
periodic orbits of a differential system. In Chap. 7 we present the more basic
results on limit cycles. In particular, we show that any topological configura-
tion of limit cycles is realizable by a convenient polynomial differential system.
We define the multiplicity of a limit cycle, and we study the bifurcations of
limit cycles for rotated families of vector fields. We discuss structural stability,
presenting a number of results and some open problems. We do not provide
complete proofs but explain some steps in the exercises.

For a two-dimensional vector field the existence of a first integral com-
pletely determines its phase portrait. Since for such vector fields the notion of
integrability is based on the existence of a first integral the following natural
question arises: Given a vector field on R?, how can one determine if this
vector field has a first integral? The easiest planar vector fields having a first
integral are the Hamiltonian ones. The integrable planar vector fields that are
not Hamiltonian are, in general, very difficult to detect. In Chap. 8 we study
the existence of first integrals for planar polynomial vector fields through the
Darbouxian theory of integrability. This kind of integrability provides a link
between the integrability of polynomial vector fields and the number of in-
variant algebraic curves that they have.

In Chap.9 we present a computer program based on the tools introduced
in the previous chapters. The program is an extension of previous work due
to J. C. Artés and J. Llibre and strongly relies on ideas of F. Dumortier and
the thesis of C. Herssens. Recently, P. De Maesschalck had made substan-
tial adaptations. The program is called “Polynomial Planar Phase Portraits,”
abbreviated as P4 [9]. This program is designed to draw the phase portrait
of any polynomial differential system on the compactified plane obtained by
Poincaré or Poincaré-Lyapunov compactification; local phase portraits, e.g.,
near singularities in the finite plane or at infinity, can also be obtained. Of
course, there are always some computational limitations that are described in
Chaps. 9 and 10. This last chapter is dedicated to illustrating the use of the
program P4.

Almost all chapters end with a series of appropriate exercises and some
bibliographic comments.

The program P4 is freeware and the reader may download it at will from
http://mat.uab.es/~artes/p4/p4.htm at no cost. The program does not in-
clude either MAPLE or REDUCE, which are registered programs and must
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be acquired separately from P4. The authors have checked it to be bug free,
but nevertheless the reader may eventually run into a problem that P4 (or
the symbolic program) cannot deal with, not even by modifying the working
parameters.

To end this preface we would like to thank Douglas Shafer from the Univer-
sity of North Carolina at Charlotte for improving the presentation, especially
the use of the English language, in a previous version of the book.
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